-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdemo_multi_sta.m
74 lines (62 loc) · 2.48 KB
/
demo_multi_sta.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
% ========================================================================
% Fast Multi-Scale Structural Patch Decomposition for Multi-Exposure Image Fusion, TIP,2020
% algorithm Version 1.0
% Copyright(c) 2020, Hui Li, Kede Ma, Yongwei Yong and Lei Zhang
% All Rights Reserved.
% ----------------------------------------------------------------------
% Permission to use, copy, or modify this software and its documentation
% for educational and research purposes only and without fee is hereby
% granted, provided that this copyright notice and the original authors'
% names appear on all copies and supporting documentation. This program
% shall not be used, rewritten, or adapted as the basis of a commercial
% software or hardware product without first obtaining permission of the
% authors. The authors make no representations about the suitability of
% this software for any purpose. It is provided "as is" without express
% or implied warranty.
%----------------------------------------------------------------------
% This is a static scene implementation of "Fast Multi-Scale Structural Patch Decomposition for Multi-Exposure Image Fusion"
% Please refer to the following paper:
% H. Li et al., "Fast Multi-Scale Structural Patch Decomposition for Multi-Exposure Image Fusion, 2020" In press
% IEEE Transactions on Image Processing
% Please kindly report any suggestions or corrections to xiaohui102788@126.com
%----------------------------------------------------------------------
clear;
close all;
addpath(genpath(pwd));
%static scenes
imgSeqColor= loadImg('Chinese_garden_Bartlomiej Okonek'); % [0,1]
% imgSeqColor = downSample(imgSeqColor, 1024);
%% the finest scale
tic
r1=4;
[ D1,i_mean1,aa1,N1] = scale_fine(imgSeqColor,r1);
%% the intermediate scale
[w,h,~,~]=size(imgSeqColor);
nlev = floor(log(min(w,h)) / log(2))-5;
D2 = cell(nlev,1);
aa2= cell(nlev,1);
N2= cell(nlev,1);
r2=4;
for ii=1:nlev
[ D2{ii},i_mean2,aa2{ii},N2{ii}] = scale_interm(i_mean1,r2);
i_mean1=i_mean2;
end
%% the coarsest scale
r3=4;
[fI3,i_mean3,aa3,N3] = scale_coarse(i_mean2,r3);
%% reconstruct
%% Intermediate layers
for ii=nlev:-1:1
temp=aa2{ii};
fI=zeros(size(temp));
fI(1:2:size(temp,1),1:2:size(temp,2))=fI3;
B2=boxfilter(fI, r2)./ N2{ii}+D2{ii};
fI3=B2;
end
%% finest layers
fI=zeros(size(aa1));
fI(1:2:size(aa1,1),1:2:size(aa1,2))=B2;
B1=boxfilter(fI, r1)./ N1;
C_out=repmat(B1,[1 1 3])+D1;
toc
figure,imshow(C_out)