forked from qbetterk/DAML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tsd_net.py
executable file
·726 lines (633 loc) · 32.8 KB
/
tsd_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import math
from config import global_config as cfg
import copy, random, time, logging
from torch.distributions import Categorical
from reader import pad_sequences
import pdb
def cuda_(var):
return var.cuda() if cfg.cuda else var
def toss_(p):
return random.randint(0, 99) <= p
def nan(v):
if type(v) is float:
return v == float('nan')
return np.isnan(np.sum(v.data.cpu().numpy()))
def get_sparse_input_aug(x_input_np):
"""
sparse input of
:param x_input_np: [T,B]
:return: Numpy array: [B,T,aug_V]
"""
ignore_index = [0]
unk = 2
result = np.zeros((x_input_np.shape[0], x_input_np.shape[1], cfg.vocab_size + x_input_np.shape[0]),
dtype=np.float32)
result.fill(1e-10)
for t in range(x_input_np.shape[0]):
for b in range(x_input_np.shape[1]):
w = x_input_np[t][b]
if w not in ignore_index:
if w != unk:
result[t][b][x_input_np[t][b]] = 1.0
else:
result[t][b][cfg.vocab_size + t] = 1.0
result_np = result.transpose((1, 0, 2))
result = torch.from_numpy(result_np).float()
return result
def init_gru(gru):
gru.reset_parameters()
for _, hh, _, _ in gru.all_weights:
for i in range(0, hh.size(0), gru.hidden_size):
torch.nn.init.orthogonal(hh[i:i+gru.hidden_size],gain=1)
class Attn(nn.Module):
def __init__(self, hidden_size):
super(Attn, self).__init__()
self.hidden_size = hidden_size
self.attn = nn.Linear(self.hidden_size * 2, hidden_size)
self.v = nn.Parameter(torch.zeros(hidden_size))
stdv = 1. / math.sqrt(self.v.size(0))
self.v.data.normal_(mean=0, std=stdv)
def forward(self, hidden, encoder_outputs, normalize=True):
encoder_outputs = encoder_outputs.transpose(0, 1) # [B,T,H]
attn_energies = self.score(hidden, encoder_outputs)
normalized_energy = F.softmax(attn_energies, dim=2) # [B,1,T]
context = torch.bmm(normalized_energy, encoder_outputs) # [B,1,H]
return context.transpose(0, 1) # [1,B,H]
def score(self, hidden, encoder_outputs):
max_len = encoder_outputs.size(1)
H = hidden.repeat(max_len, 1, 1).transpose(0, 1)
energy = F.tanh(self.attn(torch.cat([H, encoder_outputs], 2))) # [B,T,2H]->[B,T,H]
energy = energy.transpose(2, 1) # [B,H,T]
v = self.v.repeat(encoder_outputs.size(0), 1).unsqueeze(1) # [B,1,H]
energy = torch.bmm(v, energy) # [B,1,T]
return energy
class SimpleDynamicEncoder(nn.Module):
def __init__(self, input_size, embed_size, hidden_size, n_layers, dropout):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.embed_size = embed_size
self.n_layers = n_layers
self.dropout = dropout
self.embedding = nn.Embedding(input_size, embed_size)
self.gru = nn.GRU(embed_size, hidden_size, n_layers, dropout=self.dropout, bidirectional=True)
init_gru(self.gru)
def forward(self, input_seqs, input_lens, hidden=None):
"""
forward procedure. No need for inputs to be sorted
:param input_seqs: Variable of [T,B]
:param hidden:
:param input_lens: *numpy array* of len for each input sequence
:return:
"""
batch_size = input_seqs.size(1)
embedded = self.embedding(input_seqs)
embedded = embedded.transpose(0, 1) # [B,T,E]
sort_idx = np.argsort(-input_lens)
unsort_idx = cuda_(torch.LongTensor(np.argsort(sort_idx)))
input_lens = input_lens[sort_idx]
sort_idx = cuda_(torch.LongTensor(sort_idx))
embedded = embedded[sort_idx].transpose(0, 1) # [T,B,E]
packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, input_lens)
outputs, hidden = self.gru(packed, hidden)
outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(outputs)
outputs = outputs[:, :, :self.hidden_size] + outputs[:, :, self.hidden_size:]
outputs = outputs.transpose(0, 1)[unsort_idx].transpose(0, 1).contiguous()
hidden = hidden.transpose(0, 1)[unsort_idx].transpose(0, 1).contiguous()
return outputs, hidden, embedded
class BSpanDecoder(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, dropout_rate):
super().__init__()
self.gru = nn.GRU(hidden_size + embed_size, hidden_size, dropout=dropout_rate)
self.proj = nn.Linear(hidden_size * 2, vocab_size)
self.emb = nn.Embedding(vocab_size, embed_size)
self.attn_u = Attn(hidden_size)
self.proj_copy1 = nn.Linear(hidden_size, hidden_size)
self.proj_copy2 = nn.Linear(hidden_size, hidden_size)
self.dropout_rate = dropout_rate
init_gru(self.gru)
self.inp_dropout = nn.Dropout(self.dropout_rate)
def forward(self, u_enc_out, z_tm1, last_hidden, u_input_np, pv_z_enc_out, prev_z_input_np, u_emb, pv_z_emb):
sparse_u_input = Variable(get_sparse_input_aug(u_input_np), requires_grad=False)
if pv_z_enc_out is not None:
context = self.attn_u(last_hidden, torch.cat([pv_z_enc_out, u_enc_out], dim=0))
else:
context = self.attn_u(last_hidden, u_enc_out)
embed_z = self.emb(z_tm1)
#embed_z = F.dropout(embed_z, self.dropout_rate)
#embed_z = self.inp_dropout(embed_z)
gru_in = torch.cat([embed_z, context], 2)
gru_out, last_hidden = self.gru(gru_in, last_hidden)
#gru_out = F.dropout(gru_out, self.dropout_rate)
#gru_out = self.inp_dropout(gru_out)
gen_score = self.proj(torch.cat([gru_out, context], 2)).squeeze(0)
#gen_score = F.dropout(gen_score, self.dropout_rate)
#gen_score = self.inp_dropout(gen_score)
u_copy_score = F.tanh(self.proj_copy1(u_enc_out.transpose(0, 1))) # [B,T,H]
# stable version of copynet
u_copy_score = torch.matmul(u_copy_score, gru_out.squeeze(0).unsqueeze(2)).squeeze(2)
u_copy_score = u_copy_score.cpu()
u_copy_score_max = torch.max(u_copy_score, dim=1, keepdim=True)[0]
u_copy_score = torch.exp(u_copy_score - u_copy_score_max) # [B,T]
u_copy_score = torch.log(torch.bmm(u_copy_score.unsqueeze(1), sparse_u_input)).squeeze(
1) + u_copy_score_max # [B,V]
u_copy_score = cuda_(u_copy_score)
if pv_z_enc_out is None:
#u_copy_score = F.dropout(u_copy_score, self.dropout_rate)
#u_copy_score = self.inp_dropout(u_copy_score)
scores = F.softmax(torch.cat([gen_score, u_copy_score], dim=1), dim=1)
gen_score, u_copy_score = scores[:, :cfg.vocab_size], \
scores[:, cfg.vocab_size:]
proba = gen_score + u_copy_score[:, :cfg.vocab_size] # [B,V]
proba = torch.cat([proba, u_copy_score[:, cfg.vocab_size:]], 1)
else:
sparse_pv_z_input = Variable(get_sparse_input_aug(prev_z_input_np), requires_grad=False)
pv_z_copy_score = F.tanh(self.proj_copy2(pv_z_enc_out.transpose(0, 1))) # [B,T,H]
pv_z_copy_score = torch.matmul(pv_z_copy_score, gru_out.squeeze(0).unsqueeze(2)).squeeze(2)
pv_z_copy_score = pv_z_copy_score.cpu()
pv_z_copy_score_max = torch.max(pv_z_copy_score, dim=1, keepdim=True)[0]
pv_z_copy_score = torch.exp(pv_z_copy_score - pv_z_copy_score_max) # [B,T]
pv_z_copy_score = torch.log(torch.bmm(pv_z_copy_score.unsqueeze(1), sparse_pv_z_input)).squeeze(
1) + pv_z_copy_score_max # [B,V]
pv_z_copy_score = cuda_(pv_z_copy_score)
scores = F.softmax(torch.cat([gen_score, u_copy_score, pv_z_copy_score], dim=1), dim=1)
gen_score, u_copy_score, pv_z_copy_score = scores[:, :cfg.vocab_size], \
scores[:,
cfg.vocab_size:2 * cfg.vocab_size + u_input_np.shape[0]], \
scores[:, 2 * cfg.vocab_size + u_input_np.shape[0]:]
proba = gen_score + u_copy_score[:, :cfg.vocab_size] + pv_z_copy_score[:, :cfg.vocab_size] # [B,V]
proba = torch.cat([proba, pv_z_copy_score[:, cfg.vocab_size:], u_copy_score[:, cfg.vocab_size:]], 1)
return gru_out, last_hidden, proba
class ResponseDecoder(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, degree_size, dropout_rate, gru, proj, emb, vocab):
super().__init__()
self.emb = emb
self.attn_z = Attn(hidden_size)
self.attn_u = Attn(hidden_size)
self.gru = gru
init_gru(self.gru)
self.proj = proj
self.proj_copy1 = nn.Linear(hidden_size, hidden_size)
self.proj_copy2 = nn.Linear(hidden_size, hidden_size)
self.dropout_rate = dropout_rate
self.vocab = vocab
def get_sparse_selective_input(self, x_input_np):
result = np.zeros((x_input_np.shape[0], x_input_np.shape[1], cfg.vocab_size + x_input_np.shape[0]), dtype=np.float32)
result.fill(1e-10)
reqs = ['address', 'phone', 'postcode', 'pricerange', 'area']
for t in range(x_input_np.shape[0] - 1):
for b in range(x_input_np.shape[1]):
w = x_input_np[t][b]
word = self.vocab.decode(w)
if word in reqs:
slot = self.vocab.encode(word + '_SLOT')
result[t + 1][b][slot] = 1.0
else:
if w == 2 or w >= cfg.vocab_size:
result[t+1][b][cfg.vocab_size + t] = 5.0
else:
result[t+1][b][w] = 1.0
result_np = result.transpose((1, 0, 2))
result = torch.from_numpy(result_np).float()
return result
def forward(self, z_enc_out, u_enc_out, u_input_np, m_t_input, degree_input, last_hidden, z_input_np):
sparse_z_input = Variable(self.get_sparse_selective_input(z_input_np), requires_grad=False)
m_embed = self.emb(m_t_input)
z_context = self.attn_z(last_hidden, z_enc_out)
u_context = self.attn_u(last_hidden, u_enc_out)
gru_in = torch.cat([m_embed, u_context, z_context, degree_input.unsqueeze(0)], dim=2)
gru_out, last_hidden = self.gru(gru_in, last_hidden)
gen_score = self.proj(torch.cat([z_context, u_context, gru_out], 2)).squeeze(0)
z_copy_score = F.tanh(self.proj_copy2(z_enc_out.transpose(0, 1)))
z_copy_score = torch.matmul(z_copy_score, gru_out.squeeze(0).unsqueeze(2)).squeeze(2)
z_copy_score = z_copy_score.cpu()
z_copy_score_max = torch.max(z_copy_score, dim=1, keepdim=True)[0]
z_copy_score = torch.exp(z_copy_score - z_copy_score_max) # [B,T]
z_copy_score = torch.log(torch.bmm(z_copy_score.unsqueeze(1), sparse_z_input)).squeeze(
1) + z_copy_score_max # [B,V]
z_copy_score = cuda_(z_copy_score)
scores = F.softmax(torch.cat([gen_score, z_copy_score], dim=1), dim=1)
gen_score, z_copy_score = scores[:, :cfg.vocab_size], \
scores[:, cfg.vocab_size:]
proba = gen_score + z_copy_score[:, :cfg.vocab_size] # [B,V]
proba = torch.cat([proba, z_copy_score[:, cfg.vocab_size:]], 1)
return proba, last_hidden, gru_out
# class ResponseDecoderRL(nn.Module):
# def __init__(self, embed_size, hidden_size, vocab_size, emb, vocab):
# super(ResponseDecoderRL, self).__init__()
# self.vars = nn.ParameterList([
# # # embedding
# nn.Parameter(torch.empty(input_size, embed_size)),
# # # GRU
# nn.Parameter(torch.empty(input_size, 3 * hidden_size)),
# nn.Parameter(torch.empty(hidden_size, 3 * hidden_size)),
# # # attention
# # # linear projection
# nn.Paramter(torch.empty(hidden_size, hidden_size))
# ])
# def weight_init(self):
# pass
# def forward(self, x, vars):
# pass
# # # GRU
# x = x.view(-1, x.size(1))
# w_ih = F.linear(x, vars[1])
# w_hh = F.linear(x, last_hidden)
# w_ih = w_ih.squeeze()
# w_hh = w_hh.squeeze()
# i_r, i_z, i_n = w_ih.chunk(3, 1)
# h_r, h_z, h_n = w_hh.chunk(3, 1)
# r_gate = F.sigmoid(i_r + h_r)
# u_gate = F.sigmoid(i_z + h_z)
# memory = F.tanh(i_n + r_gate * h_n)
# last_hidden = u_gate * last_hidden + (1 - u_gate) * memory
class TSD(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, degree_size, layer_num, dropout_rate, z_length,
max_ts, beam_search=False, teacher_force=100, **kwargs):
super().__init__()
self.vocab = kwargs['vocab']
self.emb = nn.Embedding(vocab_size, embed_size)
self.dec_gru = nn.GRU(degree_size + embed_size + hidden_size * 2, hidden_size, dropout=dropout_rate)
self.proj = nn.Linear(hidden_size * 3, vocab_size)
self.u_encoder = SimpleDynamicEncoder(vocab_size, embed_size, hidden_size, layer_num, dropout_rate)
self.z_decoder = BSpanDecoder(embed_size, hidden_size, vocab_size, dropout_rate)
self.m_decoder = ResponseDecoder(embed_size, hidden_size, vocab_size, degree_size, dropout_rate,
self.dec_gru, self.proj, self.emb, self.vocab)
self.embed_size = embed_size
self.z_length = z_length
self.max_ts = max_ts
self.beam_search = beam_search
self.teacher_force = teacher_force
self.pr_loss = nn.NLLLoss(ignore_index=0)
self.dec_loss = nn.NLLLoss(ignore_index=0)
self.saved_log_policy = []
if self.beam_search:
self.beam_size = kwargs['beam_size']
self.eos_token_idx = kwargs['eos_token_idx']
def forward(self, u_input, u_input_np, m_input, m_input_np, z_input, u_len, m_len, turn_states,
degree_input, mode, **kwargs):
if mode == 'train' or mode == 'valid':
pz_proba, pm_dec_proba, turn_states = \
self.forward_turn(u_input, u_len, m_input=m_input, m_len=m_len, z_input=z_input, mode='train',
turn_states=turn_states, degree_input=degree_input, u_input_np=u_input_np,
m_input_np=m_input_np, **kwargs)
loss, pr_loss, m_loss = self.supervised_loss(torch.log(pz_proba), torch.log(pm_dec_proba),
z_input, m_input)
return loss, pr_loss, m_loss, turn_states
elif mode == 'test':
m_output_index, pz_index, turn_states = self.forward_turn(u_input, u_len=u_len, mode='test',
turn_states=turn_states,
degree_input=degree_input,
u_input_np=u_input_np, m_input_np=m_input_np,
**kwargs
)
return m_output_index, pz_index, turn_states
elif mode == 'rl':
loss = self.forward_turn(u_input, u_len=u_len, is_train=False, mode='rl',
turn_states=turn_states,
degree_input=degree_input,
u_input_np=u_input_np, m_input_np=m_input_np,
**kwargs
)
return loss
def forward_turn(self, u_input, u_len, turn_states, mode, degree_input, u_input_np, m_input_np=None,
m_input=None, m_len=None, z_input=None, **kwargs):
"""
compute required outputs for a single dialogue turn. Turn state{Dict} will be updated in each call.
:param u_input_np:
:param m_input_np:
:param u_len:
:param turn_states:
:param is_train:
:param u_input: [T,B]
:param m_input: [T,B]
:param z_input: [T,B]
:return:
"""
prev_z_input = kwargs.get('prev_z_input', None)
prev_z_input_np = kwargs.get('prev_z_input_np', None)
prev_z_len = kwargs.get('prev_z_len', None)
pv_z_emb = None
batch_size = u_input.size(1)
pv_z_enc_out = None
if prev_z_input is not None:
pv_z_enc_out, _, pv_z_emb = self.u_encoder(prev_z_input, prev_z_len)
u_enc_out, u_enc_hidden, u_emb = self.u_encoder(u_input, u_len)
last_hidden = u_enc_hidden[:-1]
z_tm1 = cuda_(Variable(torch.ones(1, batch_size).long() * 3)) # GO_2 token
m_tm1 = cuda_(Variable(torch.ones(1, batch_size).long())) # GO token
if mode == 'train':
pz_dec_outs = []
pz_proba = []
z_length = z_input.size(0) if z_input is not None else self.z_length # GO token
hiddens = [None] * batch_size
for t in range(z_length):
pz_dec_out, last_hidden, proba = \
self.z_decoder(u_enc_out=u_enc_out, u_input_np=u_input_np,
z_tm1=z_tm1, last_hidden=last_hidden,
pv_z_enc_out=pv_z_enc_out, prev_z_input_np=prev_z_input_np,
u_emb=u_emb, pv_z_emb=pv_z_emb)
pz_proba.append(proba)
pz_dec_outs.append(pz_dec_out)
z_np = z_tm1.view(-1).cpu().data.numpy()
for i in range(batch_size):
if z_np[i] == self.vocab.encode('EOS_Z2'):
hiddens[i] = last_hidden[:,i,:]
z_tm1 = z_input[t].view(1, -1)
for i in range(batch_size):
if hiddens[i] is None:
hiddens[i] = last_hidden[:,i,:]
last_hidden = torch.stack(hiddens, dim=1)
z_input_np = z_input.cpu().data.numpy()
pz_dec_outs = torch.cat(pz_dec_outs, dim=0) # [Tz,B,H]
pz_proba = torch.stack(pz_proba, dim=0)
# P(m|z,u)
pm_dec_proba, m_dec_outs = [], []
m_length = m_input.size(0) # Tm
#last_hidden = u_enc_hidden[:-1]
for t in range(m_length):
teacher_forcing = toss_(self.teacher_force)
proba, last_hidden, dec_out = self.m_decoder(pz_dec_outs, u_enc_out, u_input_np, m_tm1,
degree_input, last_hidden, z_input_np)
if teacher_forcing:
m_tm1 = m_input[t].view(1, -1)
else:
_, m_tm1 = torch.topk(proba, 1)
m_tm1 = m_tm1.view(1, -1)
pm_dec_proba.append(proba)
m_dec_outs.append(dec_out)
pm_dec_proba = torch.stack(pm_dec_proba, dim=0) # [T,B,V]
return pz_proba, pm_dec_proba, None
else:
pz_dec_outs, bspan_index,last_hidden = self.bspan_decoder(u_enc_out, z_tm1, last_hidden, u_input_np,
pv_z_enc_out=pv_z_enc_out, prev_z_input_np=prev_z_input_np,
u_emb=u_emb, pv_z_emb=pv_z_emb)
pz_dec_outs = torch.cat(pz_dec_outs, dim=0)
if mode == 'test':
if not self.beam_search:
m_output_index = self.greedy_decode(pz_dec_outs, u_enc_out, m_tm1, u_input_np, last_hidden,
degree_input, bspan_index)
else:
m_output_index = self.beam_search_decode(pz_dec_outs, u_enc_out, m_tm1, u_input_np, last_hidden,
degree_input, bspan_index)
return m_output_index, bspan_index, None
elif mode == 'rl':
return self.sampling_decode(pz_dec_outs, u_enc_out, m_tm1, u_input_np, last_hidden,
degree_input, bspan_index)
def bspan_decoder(self, u_enc_out, z_tm1, last_hidden, u_input_np, pv_z_enc_out, prev_z_input_np, u_emb, pv_z_emb):
pz_dec_outs = []
pz_proba = []
decoded = []
batch_size = u_enc_out.size(1)
hiddens = [None] * batch_size
for t in range(cfg.z_length):
pz_dec_out, last_hidden, proba = \
self.z_decoder(u_enc_out=u_enc_out, u_input_np=u_input_np,
z_tm1=z_tm1, last_hidden=last_hidden, pv_z_enc_out=pv_z_enc_out,
prev_z_input_np=prev_z_input_np, u_emb=u_emb, pv_z_emb=pv_z_emb)
pz_proba.append(proba)
pz_dec_outs.append(pz_dec_out)
z_proba, z_index = torch.topk(proba, 1) # [B,1]
z_index = z_index.data.view(-1)
decoded.append(z_index.clone())
for i in range(z_index.size(0)):
if z_index[i] >= cfg.vocab_size:
z_index[i] = 2 # unk
z_np = z_tm1.view(-1).cpu().data.numpy()
for i in range(batch_size):
if z_np[i] == self.vocab.encode('EOS_Z2'):
hiddens[i] = last_hidden[:, i, :]
z_tm1 = cuda_(Variable(z_index).view(1, -1))
for i in range(batch_size):
if hiddens[i] is None:
hiddens[i] = last_hidden[:, i, :]
last_hidden = torch.stack(hiddens, dim=1)
decoded = torch.stack(decoded, dim=0).transpose(0, 1)
decoded = list(decoded)
decoded = [list(_) for _ in decoded]
return pz_dec_outs, decoded, last_hidden
def greedy_decode(self, pz_dec_outs, u_enc_out, m_tm1, u_input_np, last_hidden, degree_input, bspan_index):
decoded = []
bspan_index_np = pad_sequences(bspan_index).transpose((1, 0))
for t in range(self.max_ts):
proba, last_hidden, _ = self.m_decoder(pz_dec_outs, u_enc_out, u_input_np, m_tm1,
degree_input, last_hidden, bspan_index_np)
mt_proba, mt_index = torch.topk(proba, 1) # [B,1]
mt_index = mt_index.data.view(-1)
decoded.append(mt_index.clone())
for i in range(mt_index.size(0)):
if mt_index[i] >= cfg.vocab_size:
mt_index[i] = 2 # unk
m_tm1 = cuda_(Variable(mt_index).view(1, -1))
decoded = torch.stack(decoded, dim=0).transpose(0, 1)
decoded = list(decoded)
return [list(_) for _ in decoded]
def beam_search_decode_single(self, pz_dec_outs, u_enc_out, m_tm1, u_input_np, last_hidden, degree_input,
bspan_index):
eos_token_id = self.vocab.encode(cfg.eos_m_token)
batch_size = pz_dec_outs.size(1)
if batch_size != 1:
raise ValueError('"Beam search single" requires batch size to be 1')
class BeamState:
def __init__(self, score, last_hidden, decoded, length):
"""
Beam state in beam decoding
:param score: sum of log-probabilities
:param last_hidden: last hidden
:param decoded: list of *Variable[1*1]* of all decoded words
:param length: current decoded sentence length
"""
self.score = score
self.last_hidden = last_hidden
self.decoded = decoded
self.length = length
def update_clone(self, score_incre, last_hidden, decoded_t):
decoded = copy.copy(self.decoded)
decoded.append(decoded_t)
clone = BeamState(self.score + score_incre, last_hidden, decoded, self.length + 1)
return clone
def beam_result_valid(decoded_t, bspan_index):
decoded_t = [_.view(-1).data[0] for _ in decoded_t]
req_slots = self.get_req_slots(bspan_index)
decoded_sentence = self.vocab.sentence_decode(decoded_t, cfg.eos_m_token)
for req in req_slots:
if req not in decoded_sentence:
return False
return True
def score_bonus(state, decoded, bspan_index):
bonus = cfg.beam_len_bonus
return bonus
def soft_score_incre(score, turn):
return score
finished, failed = [], []
states = [] # sorted by score decreasingly
dead_k = 0
states.append(BeamState(0, last_hidden, [m_tm1], 0))
bspan_index_np = np.array(bspan_index).reshape(-1, 1)
for t in range(self.max_ts):
new_states = []
k = 0
while k < len(states) and k < self.beam_size - dead_k:
state = states[k]
last_hidden, m_tm1 = state.last_hidden, state.decoded[-1]
proba, last_hidden, _ = self.m_decoder(pz_dec_outs, u_enc_out, u_input_np, m_tm1, degree_input,
last_hidden, bspan_index_np)
proba = torch.log(proba)
mt_proba, mt_index = torch.topk(proba, self.beam_size - dead_k) # [1,K]
for new_k in range(self.beam_size - dead_k):
score_incre = soft_score_incre(mt_proba[0][new_k].data[0], t) + score_bonus(state,
mt_index[0][new_k].data[0],bspan_index)
if len(new_states) >= self.beam_size - dead_k and state.score + score_incre < new_states[-1].score:
break
decoded_t = mt_index[0][new_k]
if decoded_t.data[0] >= cfg.vocab_size:
decoded_t.data[0] = 2 # unk
if self.vocab.decode(decoded_t.data[0]) == cfg.eos_m_token:
if beam_result_valid(state.decoded, bspan_index):
finished.append(state)
dead_k += 1
else:
failed.append(state)
else:
decoded_t = decoded_t.view(1, -1)
new_state = state.update_clone(score_incre, last_hidden, decoded_t)
new_states.append(new_state)
k += 1
if self.beam_size - dead_k < 0:
break
new_states = new_states[:self.beam_size - dead_k]
new_states.sort(key=lambda x: -x.score)
states = new_states
if t == self.max_ts - 1 and not finished:
finished = failed
print('FAIL')
if not finished:
finished.append(states[0])
finished.sort(key=lambda x: -x.score)
decoded_t = finished[0].decoded
decoded_t = [_.view(-1).data[0] for _ in decoded_t]
decoded_sentence = self.vocab.sentence_decode(decoded_t, cfg.eos_m_token)
print(decoded_sentence)
generated = torch.cat(finished[0].decoded, dim=1).data # [B=1, T]
return generated
def beam_search_decode(self, pz_dec_outs, u_enc_out, m_tm1, u_input_np, last_hidden, degree_input, bspan_index):
vars = torch.split(pz_dec_outs, 1, dim=1), torch.split(u_enc_out, 1, dim=1), torch.split(
m_tm1, 1, dim=1), torch.split(last_hidden, 1, dim=1), torch.split(degree_input, 1, dim=0)
decoded = []
for i, (pz_dec_out_s, u_enc_out_s, m_tm1_s, last_hidden_s, degree_input_s) in enumerate(zip(*vars)):
decoded_s = self.beam_search_decode_single(pz_dec_out_s, u_enc_out_s, m_tm1_s,
u_input_np[:, i].reshape((-1, 1)),
last_hidden_s, degree_input_s, bspan_index[i])
decoded.append(decoded_s)
return [list(_.view(-1)) for _ in decoded]
def supervised_loss(self, pz_proba, pm_dec_proba, z_input, m_input):
pz_proba, pm_dec_proba = pz_proba[:, :, :cfg.vocab_size].contiguous(), pm_dec_proba[:, :,
:cfg.vocab_size].contiguous()
pr_loss = self.pr_loss(pz_proba.view(-1, pz_proba.size(2)), z_input.view(-1))
m_loss = self.dec_loss(pm_dec_proba.view(-1, pm_dec_proba.size(2)), m_input.view(-1))
loss = pr_loss + m_loss
return loss, pr_loss, m_loss
def self_adjust(self, epoch):
pass
# REINFORCEMENT fine-tuning with MC
def get_req_slots(self, bspan_index):
reqs = ['address', 'phone', 'postcode', 'pricerange', 'area']
reqs = set(self.vocab.sentence_decode(bspan_index).split()).intersection(reqs)
return [_ + '_SLOT' for _ in reqs]
def reward(self, m_tm1, decoded, bspan_index):
"""
The setting of the reward function is heuristic. It can be better optimized.
:param m_tm1:
:param decoded:
:param bspan_index:
:return:
"""
req_slots = self.get_req_slots(bspan_index)
all_reqs = ['address', 'phone', 'postcode', 'pricerange', 'area']
all_reqs = [_ + '_SLOT' for _ in all_reqs]
m_tm1 = self.vocab.decode(m_tm1[0])
finished = m_tm1 == 'EOS_M'
decoded = [_.view(-1)[0] for _ in decoded]
decoded_sentence = self.vocab.sentence_decode(decoded, cfg.eos_m_token).split()
reward = 0.0 # -0.1
'''
if not finished:
if m_tm1 in req_slots:
if decoded_sentence and m_tm1 not in decoded_sentence[:-1]:
reward = 1.0
'''
# some modification for reward function.
if m_tm1 in req_slots:
if decoded_sentence and m_tm1 not in decoded_sentence[:-1]:
reward += 1.5
else:
reward -= 1.0 # repeat
elif m_tm1 in all_reqs:
if decoded_sentence and m_tm1 not in decoded_sentence[:-1]:
reward += 0.5
return reward, finished
def sampling_decode(self, pz_dec_outs, u_enc_out, m_tm1, u_input_np, last_hidden, degree_input, bspan_index):
vars = torch.split(pz_dec_outs, 1, dim=1), torch.split(u_enc_out, 1, dim=1), torch.split(
m_tm1, 1, dim=1), torch.split(last_hidden, 1, dim=1), torch.split(degree_input, 1, dim=0)
batch_loss = []
sample_num = 1
for i, (pz_dec_out_s, u_enc_out_s, m_tm1_s, last_hidden_s, degree_input_s) in enumerate(zip(*vars)):
if not self.get_req_slots(bspan_index[i]):
continue
for j in range(sample_num):
loss = self.sampling_decode_single(pz_dec_out_s, u_enc_out_s, m_tm1_s, u_input_np[:, i].reshape((-1, 1)),
last_hidden_s, degree_input_s, bspan_index[i])
batch_loss.append(loss)
if not batch_loss:
return None
else:
return sum(batch_loss) / len(batch_loss)
def sampling_decode_single(self, pz_dec_outs, u_enc_out, m_tm1, u_input_np, last_hidden, degree_input, bspan_index):
decoded = []
reward_sum = 0
log_probs = []
rewards = []
bspan_index_np = np.array(bspan_index).reshape(-1, 1)
for t in range(self.max_ts):
# reward
reward, finished = self.reward(m_tm1.data.view(-1), decoded, bspan_index)
reward_sum += reward
rewards.append(reward)
if t == self.max_ts - 1:
finished = True
if finished:
loss = self.finish_episode(log_probs, rewards)
return loss
# action
proba, last_hidden, _ = self.m_decoder(pz_dec_outs, u_enc_out, u_input_np, m_tm1,
degree_input, last_hidden, bspan_index_np)
proba = proba.squeeze(0) # [B,V]
dis = Categorical(proba)
action = dis.sample()
log_probs.append(dis.log_prob(action))
mt_index = action.data.view(-1)
decoded.append(mt_index.clone())
for i in range(mt_index.size(0)):
if mt_index[i] >= cfg.vocab_size:
mt_index[i] = 2 # unk
m_tm1 = cuda_(Variable(mt_index).view(1, -1))
def finish_episode(self, log_probas, saved_rewards):
R = 0
policy_loss = []
rewards = []
for r in saved_rewards:
R = r + 0.8 * R
rewards.insert(0, R)
rewards = torch.Tensor(rewards)
rewards = (rewards - rewards.mean()) / (rewards.std() + np.finfo(np.float32).eps)
for log_prob, reward in zip(log_probas, rewards):
policy_loss.append(-log_prob * reward)
l = len(policy_loss)
policy_loss = torch.cat(policy_loss).sum()
return policy_loss / l