forked from ImperialCollegeLondon/WInc3D
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathglassman.f90
184 lines (147 loc) · 4.7 KB
/
glassman.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
!=======================================================================
! This is part of the 2DECOMP&FFT library
!
! 2DECOMP&FFT is a software framework for general-purpose 2D (pencil)
! decomposition. It also implements a highly scalable distributed
! three-dimensional Fast Fourier Transform (FFT).
!
! Copyright (C) 2009-2011 Ning Li, the Numerical Algorithms Group (NAG)
!
!=======================================================================
! This module contains a few 'generic' FFT routines, making the
! 2DECOMP&FFT library not dependent on any external libraries
module glassman
use decomp_2d, only : mytype
implicit none
contains
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Following is a FFT implementation based on algorithm proposed by
! Glassman, a general FFT algorithm supporting arbitrary input length.
!
! W. E. Ferguson, Jr., "A simple derivation of Glassman general-n fast
! Fourier transform," Comput. and Math. with Appls., vol. 8, no. 6, pp.
! 401-411, 1982.
!
! Original implemtation online at http://www.jjj.de/fft/fftpage.html
!
! Updated
! - to handle double-precision as well
! - unnecessary scaling code removed
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
SUBROUTINE SPCFFT(U,N,ISIGN,WORK)
IMPLICIT NONE
LOGICAL :: INU
INTEGER :: A,B,C,N,I,ISIGN
COMPLEX(mytype) :: U(*),WORK(*)
A = 1
B = N
C = 1
INU = .TRUE.
DO WHILE ( B .GT. 1 )
A = C * A
C = 2
DO WHILE ( MOD(B,C) .NE. 0 )
C = C + 1
END DO
B = B / C
IF ( INU ) THEN
CALL SPCPFT (A,B,C,U,WORK,ISIGN)
ELSE
CALL SPCPFT (A,B,C,WORK,U,ISIGN)
END IF
INU = ( .NOT. INU )
END DO
IF ( .NOT. INU ) THEN
DO I = 1, N
U(I) = WORK(I)
END DO
END IF
RETURN
END SUBROUTINE SPCFFT
SUBROUTINE SPCPFT( A, B, C, UIN, UOUT, ISIGN )
IMPLICIT NONE
INTEGER :: ISIGN,A,B,C,IA,IB,IC,JCR,JC
DOUBLE PRECISION :: ANGLE
COMPLEX(mytype) :: UIN(B,C,A),UOUT(B,A,C),DELTA,OMEGA,SUM
ANGLE = 6.28318530717958_mytype / REAL( A * C, kind=mytype )
OMEGA = CMPLX( 1.0, 0.0, kind=mytype )
IF( ISIGN .EQ. 1 ) THEN
DELTA = CMPLX( DCOS(ANGLE), DSIN(ANGLE), kind=mytype )
ELSE
DELTA = CMPLX( DCOS(ANGLE), -DSIN(ANGLE), kind=mytype )
END IF
DO IC = 1, C
DO IA = 1, A
DO IB = 1, B
SUM = UIN( IB, C, IA )
DO JCR = 2, C
JC = C + 1 - JCR
SUM = UIN( IB, JC, IA ) + OMEGA * SUM
END DO
UOUT( IB, IA, IC ) = SUM
END DO
OMEGA = DELTA * OMEGA
END DO
END DO
RETURN
END SUBROUTINE SPCPFT
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! A 3D real-to-complex routine implemented using the 1D FFT above
! Input: nx*ny*nz real numbers
! Output: (nx/2+1)*ny*nz complex numbers
! Just like big FFT libraries (such as FFTW) do
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine glassman_3d_r2c(in_r,nx,ny,nz,out_c)
implicit none
integer, intent(IN) :: nx,ny,nz
real(mytype), dimension(nx,ny,nz) :: in_r
complex(mytype), dimension(nx/2+1,ny,nz) :: out_c
complex(mytype), allocatable, dimension(:) :: buf, scratch
integer :: maxsize, i,j,k
maxsize = max(nx, max(ny,nz))
allocate(buf(maxsize))
allocate(scratch(maxsize))
! ===== 1D FFTs in X =====
do k=1,nz
do j=1,ny
! Glassman's 1D FFT is c2c only,
! needing some pre- and post-processing for r2c
! pack real input in complex storage
do i=1,nx
buf(i) = cmplx(in_r(i,j,k),0._mytype, kind=mytype)
end do
call spcfft(buf,nx,-1,scratch)
! simply drop the redundant part of the complex output
do i=1,nx/2+1
out_c(i,j,k) = buf(i)
end do
end do
end do
! ===== 1D FFTs in Y =====
do k=1,nz
do i=1,nx/2+1
do j=1,ny
buf(j) = out_c(i,j,k)
end do
call spcfft(buf,ny,-1,scratch)
do j=1,ny
out_c(i,j,k) = buf(j)
end do
end do
end do
! ===== 1D FFTs in Z =====
do j=1,ny
do i=1,nx/2+1
do k=1,nz
buf(k) = out_c(i,j,k)
end do
call spcfft(buf,nz,-1,scratch)
do k=1,nz
out_c(i,j,k) = buf(k)
end do
end do
end do
deallocate(buf,scratch)
return
end subroutine glassman_3d_r2c
end module glassman