forked from ImperialCollegeLondon/WInc3D
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconvdiff.f90
679 lines (585 loc) · 23.4 KB
/
convdiff.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
!################################################################################
!This file is part of Incompact3d.
!
!Incompact3d
!Copyright (c) 2012 Eric Lamballais and Sylvain Laizet
!eric.lamballais@univ-poitiers.fr / sylvain.laizet@gmail.com
!
! Incompact3d is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation.
!
! Incompact3d is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with the code. If not, see <http://www.gnu.org/licenses/>.
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
! We kindly request that you cite Incompact3d in your publications and
! presentations. The following citations are suggested:
!
! 1-Laizet S. & Lamballais E., 2009, High-order compact schemes for
! incompressible flows: a simple and efficient method with the quasi-spectral
! accuracy, J. Comp. Phys., vol 228 (15), pp 5989-6015
!
! 2-Laizet S. & Li N., 2011, Incompact3d: a powerful tool to tackle turbulence
! problems with up to 0(10^5) computational cores, Int. J. of Numerical
! Methods in Fluids, vol 67 (11), pp 1735-1757
!################################################################################
!*************************************************************************************
subroutine convdiff(ux1,uy1,uz1,phi1,ep1,ta1,tb1,tc1,&
td1,te1,tf1,tg1,th1,ti1,di1,ux2,uy2,uz2,phi2,ta2,tb2,tc2,td2,te2,tf2,tg2,th2,&
ti2,tj2,di2,ux3,uy3,phi3,uz3,ta3,tb3,tc3,td3,te3,tf3,tg3,th3,ti3,di3,nut1,shrt_coeff)
!*************************************************************************************
USE param
USE var, only: FTx, FTy, FTz, Fdiscx, Fdiscy, Fdiscz, Ftripx
USE decomp_2d
USE decomp_2d_io
USE MPI
implicit none
! GLOBAL ARRAYS
real(mytype),dimension(xsize(1),xsize(2),xsize(3)) :: ux1,uy1,uz1,phi1,ep1,deltaphi1
real(mytype),dimension(xsize(1),xsize(2),xsize(3)) :: ta1,tb1,tc1,td1,te1,tf1,tf1_abl,tg1,th1,ti1,di1
real(mytype),dimension(ysize(1),ysize(2),ysize(3)) :: ux2,uy2,uz2,phi2,deltaphi2
real(mytype),dimension(ysize(1),ysize(2),ysize(3)) :: ta2,tb2,tc2,td2,te2,tf2,tf2_abl,ta2_abl,tg2,th2,ti2,tj2,di2
real(mytype),dimension(zsize(1),zsize(2),zsize(3)) :: ux3,uy3,uz3,phi3
real(mytype),dimension(zsize(1),zsize(2),zsize(3)) :: ta3,tb3,tc3,td3,te3,tf3,tg3,th3,ti3,di3,ta3_abl
!LES Arrays
real(mytype),dimension(xsize(1),xsize(2),xsize(3)) :: sxx1,syy1,szz1,&
sxy1,sxz1,syz1
real(mytype),dimension(xsize(1),xsize(2),xsize(3)) :: asxx1,asyy1,aszz1,&
asxy1,asxz1,asyz1
real(mytype),dimension(xsize(1),xsize(2),xsize(3)) :: nut1
real(mytype),dimension(xsize(1),xsize(2),xsize(3)) :: sgsx1,sgsy1,sgsz1
real(mytype),dimension(xsize(1),xsize(2),xsize(3)) :: gxx1,gyx1,gzx1,&
gxy1,gyy1,gzy1,gxz1,gyz1,gzz1
real(mytype),dimension(xsize(1),xsize(2),xsize(3)) :: srt_smag, shrt2, shrt_coeff
real(mytype),dimension(xsize(1),xsize(2),xsize(3)) :: dsmagcst
!STATISTICS Arrays
real(mytype),dimension(xszV(1),xszV(2),xszV(3)) :: uvisu
! Buoyancy
real(mytype),dimension(ysize(2)) :: tmpphi, phiPlaneAve !Horizontally-averaged potential temperature
!ABL boundary conditions
real(mytype),dimension(xsize(1),xsize(2),xsize(3)) :: tablx1, tably1, tablz1
real(mytype),dimension(xsize(1),xsize(2),xsize(3)) :: wallfluxx1,wallfluxy1,wallfluxz1,wallfluxphi1
real(mytype),dimension(xsize(1),xsize(2),xsize(3)) :: tauwallxy1, tauwallzy1
integer, dimension(2) :: dims, dummy_coords
logical, dimension(2) :: dummy_periods
integer :: ijk,nvect1,nvect2,nvect3,i,j,k,code
character(len=20) :: filename
real(mytype) :: x,y,z, lambda,lf
ta1=0.;tb1=0.;tc1=0.
nvect1=xsize(1)*xsize(2)*xsize(3)
nvect2=ysize(1)*ysize(2)*ysize(3)
nvect3=zsize(1)*zsize(2)*zsize(3)
if (iskew==0) then !UROTU!
!WORK X-PENCILS
call derx (ta1,uy1,di1,sx,ffxp,fsxp,fwxp,xsize(1),xsize(2),xsize(3),1)
call derx (tb1,uz1,di1,sx,ffxp,fsxp,fwxp,xsize(1),xsize(2),xsize(3),1)
call transpose_x_to_y(ux1,ux2)
call transpose_x_to_y(uy1,uy2)
call transpose_x_to_y(uz1,uz2)
call transpose_x_to_y(ta1,ta2)
call transpose_x_to_y(tb1,tb2)
!WORK Y-PENCILS
call dery (tc2,ux2,di2,sy,ffyp,fsyp,fwyp,ppy,ysize(1),ysize(2),ysize(3),1)
call dery (td2,uz2,di2,sy,ffyp,fsyp,fwyp,ppy,ysize(1),ysize(2),ysize(3),1)
call transpose_y_to_z(ux2,ux3)
call transpose_y_to_z(uy2,uy3)
call transpose_y_to_z(uz2,uz3)
call transpose_y_to_z(ta2,ta3)
call transpose_y_to_z(tb2,tb3)
call transpose_y_to_z(tc2,tc3)
call transpose_y_to_z(td2,td3)
!WORK Z-PENCILS
call derz (te3,ux3,di3,sz,ffzp,fszp,fwzp,zsize(1),zsize(2),zsize(3),1)
call derz (tf3,uy3,di3,sz,ffzp,fszp,fwzp,zsize(1),zsize(2),zsize(3),1)
do ijk=1,nvect3
ta3(ijk,1,1)=uz3(ijk,1,1)*(te3(ijk,1,1)-tb3(ijk,1,1))-&
uy3(ijk,1,1)*(ta3(ijk,1,1)-tc3(ijk,1,1))
tb3(ijk,1,1)=ux3(ijk,1,1)*(ta3(ijk,1,1)-tc3(ijk,1,1))-&
uz3(ijk,1,1)*(td3(ijk,1,1)-tf3(ijk,1,1))
tc3(ijk,1,1)=uy3(ijk,1,1)*(td3(ijk,1,1)-tf3(ijk,1,1))-&
ux3(ijk,1,1)*(te3(ijk,1,1)-tb3(ijk,1,1))
enddo
else !SKEW!
!############################## STARTING LES MODELLING HERE #######################
if (jLES==1.and.dynhypvisc==1) then
call shear_rate_coeff(ux1,uy1,uz1,gxx1,gyx1,gzx1,gxy1,gyy1,gzy1,gxz1,gyz1,gzz1,&
sxx1,syy1,szz1,sxy1,sxz1,syz1,shrt2,shrt_coeff,ta2,ta3,di1,di2,di3)
endif
!CLASSIC SMAGORINSKY (plus required rates)
if (jLES==2) then
sgsx1=0.;sgsy1=0.;sgsz1=0.
dsmagcst=0.
call smag(ux1,uy1,uz1,gxx1,gyx1,gzx1,gxy1,gyy1,gzy1,gxz1,gyz1,gzz1,&
sxx1,syy1,szz1,sxy1,sxz1,syz1,srt_smag,nut1,ta2,ta3,di1,di2,di3)
call lesdiff(ux1,uy1,uz1,phi1,gxx1,gyy1,gzz1,gxy1,gxz1,gyz1,gyx1,gzx1,gzy1,nut1,&
sgsx1,sgsy1,sgsz1,ep1,ta1,td1,te1,tf1,di1,ta2,td2,te2,tf2,tj2,di2,&
ta3,td3,te3,tf3,di3)
!call compute_sgs(ux1, uy1, uz1, ep1, sxx1, syy1, szz1, sxy1, sxz1, syz1, nut1, &
! sgsx1, sgsy1, sgsz1, ta1, tb1, tc1, td1, te1, tf1, di1, tb2, tc2, td2, te2, tf2, di2, &
! tc3, te3, tf3, di3)
elseif (jLES == 3) then !WALE
sgsx1=0.;sgsy1=0.;sgsz1=0.
dsmagcst=0.
! First Calculating classic Smagorinsky everywhere in the domain
call smag(ux1,uy1,uz1,gxx1,gyx1,gzx1,gxy1,gyy1,gzy1,gxz1,gyz1,gzz1,&
sxx1,syy1,szz1,sxy1,sxz1,syz1,srt_smag,nut1,ta2,ta3,di1,di2,di3)
! Then adapt the smagorinsky coefficient near the boundaries
call wale(gxx1,gyx1,gzx1,gxy1,gyy1,gzy1,gxz1,gyz1,gzz1,srt_smag,nut1)
call lesdiff(ux1,uy1,uz1,phi1,gxx1,gyy1,gzz1,gxy1,gxz1,gyz1,gyx1,gzx1,gzy1,nut1,&
sgsx1,sgsy1,sgsz1,ep1,ta1,td1,te1,tf1,di1,ta2,td2,te2,tf2,tj2,di2,&
ta3,td3,te3,tf3,di3)
elseif (jLES == 4) then !DYNAMIC SMAGORINSKY
sgsx1=0.;sgsy1=0.;sgsz1=0.
dsmagcst=0.
!call dynsmag(ux1,uy1,uz1,ep1,sxx1,syy1,szz1,sxy1,sxz1,syz1,&
!srt_smag,dsmagcst,nut1,di1,ta1,tb1,tc1,td1,ta2,tb2,tc2,td2,te2,tf2,&
!tg2,th2,ti2,di2,ta3,tb3,tc3,td3,te3,tf3,tg3,th3,ti3,di3)
call lesdiff(ux1,uy1,uz1,phi1,gxx1,gyy1,gzz1,gxy1,gxz1,gyz1,gyx1,gzx1,gzy1,nut1,&
sgsx1,sgsy1,sgsz1,ep1,ta1,td1,te1,tf1,di1,ta2,td2,te2,tf2,tj2,di2,&
ta3,td3,te3,tf3,di3)
endif
!SGS Calculation Over!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ta1=0.;tb1=0.;tc1=0.
td1=0.;te1=0.;tf1=0.
ta2=0.;tb2=0.;tc2=0.
td2=0.;te2=0.;tf2=0.
tj2=0.
ta3=0.;tb3=0.;tc3=0.
td3=0.;te3=0.;tf3=0.
!########################## ENDING LES TERMS ##################################
!SKEW CONVECTIVE TERMS!
!WORK X-PENCILS
ta1(:,:,:)=ux1(:,:,:)*ux1(:,:,:)
tb1(:,:,:)=ux1(:,:,:)*uy1(:,:,:)
tc1(:,:,:)=ux1(:,:,:)*uz1(:,:,:)
call derx (td1,ta1,di1,sx,ffxp,fsxp,fwxp,xsize(1),xsize(2),xsize(3),1)
call derx (te1,tb1,di1,sx,ffx,fsx,fwx,xsize(1),xsize(2),xsize(3),0)
call derx (tf1,tc1,di1,sx,ffx,fsx,fwx,xsize(1),xsize(2),xsize(3),0)
call derx (ta1,ux1,di1,sx,ffx,fsx,fwx,xsize(1),xsize(2),xsize(3),0)
call derx (tb1,uy1,di1,sx,ffxp,fsxp,fwxp,xsize(1),xsize(2),xsize(3),1)
call derx (tc1,uz1,di1,sx,ffxp,fsxp,fwxp,xsize(1),xsize(2),xsize(3),1)
ta1(:,:,:)=0.5*td1(:,:,:)+0.5*ux1(:,:,:)*ta1(:,:,:)
tb1(:,:,:)=0.5*te1(:,:,:)+0.5*ux1(:,:,:)*tb1(:,:,:)
tc1(:,:,:)=0.5*tf1(:,:,:)+0.5*ux1(:,:,:)*tc1(:,:,:)
call transpose_x_to_y(ux1,ux2)
call transpose_x_to_y(uy1,uy2)
call transpose_x_to_y(uz1,uz2)
call transpose_x_to_y(ta1,ta2)
call transpose_x_to_y(tb1,tb2)
call transpose_x_to_y(tc1,tc2)
!WORK Y-PENCILS
td2(:,:,:)=ux2(:,:,:)*uy2(:,:,:)
te2(:,:,:)=uy2(:,:,:)*uy2(:,:,:)
tf2(:,:,:)=uz2(:,:,:)*uy2(:,:,:)
call dery (tg2,td2,di2,sy,ffy,fsy,fwy,ppy,ysize(1),ysize(2),ysize(3),0)
call dery (th2,te2,di2,sy,ffyp,fsyp,fwyp,ppy,ysize(1),ysize(2),ysize(3),1)
call dery (ti2,tf2,di2,sy,ffy,fsy,fwy,ppy,ysize(1),ysize(2),ysize(3),0)
call dery (td2,ux2,di2,sy,ffyp,fsyp,fwyp,ppy,ysize(1),ysize(2),ysize(3),1)
call dery (te2,uy2,di2,sy,ffy,fsy,fwy,ppy,ysize(1),ysize(2),ysize(3),0)
call dery (tf2,uz2,di2,sy,ffyp,fsyp,fwyp,ppy,ysize(1),ysize(2),ysize(3),1)
ta2(:,:,:)=ta2(:,:,:)+0.5*tg2(:,:,:)+0.5*uy2(:,:,:)*td2(:,:,:)
tb2(:,:,:)=tb2(:,:,:)+0.5*th2(:,:,:)+0.5*uy2(:,:,:)*te2(:,:,:)
tc2(:,:,:)=tc2(:,:,:)+0.5*ti2(:,:,:)+0.5*uy2(:,:,:)*tf2(:,:,:)
call transpose_y_to_z(ux2,ux3)
call transpose_y_to_z(uy2,uy3)
call transpose_y_to_z(uz2,uz3)
call transpose_y_to_z(ta2,ta3)
call transpose_y_to_z(tb2,tb3)
call transpose_y_to_z(tc2,tc3)
!WORK Z-PENCILS
td3(:,:,:)=ux3(:,:,:)*uz3(:,:,:)
te3(:,:,:)=uy3(:,:,:)*uz3(:,:,:)
tf3(:,:,:)=uz3(:,:,:)*uz3(:,:,:)
call derz (tg3,td3,di3,sz,ffz,fsz,fwz,zsize(1),zsize(2),zsize(3),0)
call derz (th3,te3,di3,sz,ffz,fsz,fwz,zsize(1),zsize(2),zsize(3),0)
call derz (ti3,tf3,di3,sz,ffzp,fszp,fwzp,zsize(1),zsize(2),zsize(3),1)
call derz (td3,ux3,di3,sz,ffzp,fszp,fwzp,zsize(1),zsize(2),zsize(3),1)
call derz (te3,uy3,di3,sz,ffzp,fszp,fwzp,zsize(1),zsize(2),zsize(3),1)
call derz (tf3,uz3,di3,sz,ffz,fsz,fwz,zsize(1),zsize(2),zsize(3),0)
ta3(:,:,:)=ta3(:,:,:)+0.5*tg3(:,:,:)+0.5*uz3(:,:,:)*td3(:,:,:)
tb3(:,:,:)=tb3(:,:,:)+0.5*th3(:,:,:)+0.5*uz3(:,:,:)*te3(:,:,:)
tc3(:,:,:)=tc3(:,:,:)+0.5*ti3(:,:,:)+0.5*uz3(:,:,:)*tf3(:,:,:)
endif
!ALL THE CONVECTIVE TERMS ARE IN TA3, TB3 and TC3
td3(:,:,:)=ta3(:,:,:)
te3(:,:,:)=tb3(:,:,:)
tf3(:,:,:)=tc3(:,:,:)
!DIFFUSIVE TERMS IN Z
if (jLES==1) then ! IMPLICIT LES
call derzz_iles (ta3,ux3,di3,sz,sfzp,sszp,swzp,zsize(1),zsize(2),zsize(3),1)
call derzz_iles (tb3,uy3,di3,sz,sfzp,sszp,swzp,zsize(1),zsize(2),zsize(3),1)
call derzz_iles (tc3,uz3,di3,sz,sfz ,ssz ,swz ,zsize(1),zsize(2),zsize(3),0)
else
call derzz (ta3,ux3,di3,sz,sfzp,sszp,swzp,zsize(1),zsize(2),zsize(3),1)
call derzz (tb3,uy3,di3,sz,sfzp,sszp,swzp,zsize(1),zsize(2),zsize(3),1)
call derzz (tc3,uz3,di3,sz,sfz ,ssz ,swz ,zsize(1),zsize(2),zsize(3),0)
endif
!WORK Y-PENCILS
call transpose_z_to_y(ta3,ta2)
call transpose_z_to_y(tb3,tb2)
call transpose_z_to_y(tc3,tc2)
call transpose_z_to_y(td3,td2)
call transpose_z_to_y(te3,te2)
call transpose_z_to_y(tf3,tf2)
tg2(:,:,:)=td2(:,:,:)
th2(:,:,:)=te2(:,:,:)
ti2(:,:,:)=tf2(:,:,:)
!DIFFUSIVE TERMS IN Y
!-->for ux
if (istret.ne.0) then
if(jLES==1) then
call deryy_iles (td2,ux2,di2,sy,sfyp,ssyp,swyp,ysize(1),ysize(2),ysize(3),1)
else
call deryy (td2,ux2,di2,sy,sfyp,ssyp,swyp,ysize(1),ysize(2),ysize(3),1)
endif
call dery (te2,ux2,di2,sy,ffyp,fsyp,fwyp,ppy,ysize(1),ysize(2),ysize(3),1)
do k=1,ysize(3)
do j=1,ysize(2)
do i=1,ysize(1)
td2(i,j,k)=td2(i,j,k)*pp2y(j)-pp4y(j)*te2(i,j,k)
enddo
enddo
enddo
else
if(jLES==1) then
call deryy_iles (td2,ux2,di2,sy,sfyp,ssyp,swyp,ysize(1),ysize(2),ysize(3),1)
else
call deryy (td2,ux2,di2,sy,sfyp,ssyp,swyp,ysize(1),ysize(2),ysize(3),1)
endif
!call deryy (td2,ux2,di2,sy,sfyp,ssyp,swyp,ysize(1),ysize(2),ysize(3),1)
endif
!-->for uy
if (istret.ne.0) then
if(jLES==1) then
call deryy_iles (te2,uy2,di2,sy,sfy,ssy,swy,ysize(1),ysize(2),ysize(3),0)
else
call deryy (te2,uy2,di2,sy,sfy,ssy,swy,ysize(1),ysize(2),ysize(3),0)
endif
call dery (tf2,uy2,di2,sy,ffy,fsy,fwy,ppy,ysize(1),ysize(2),ysize(3),0)
do k=1,ysize(3)
do j=1,ysize(2)
do i=1,ysize(1)
te2(i,j,k)=te2(i,j,k)*pp2y(j)-pp4y(j)*tf2(i,j,k)
enddo
enddo
enddo
else
if(jLES==1) then
call deryy_iles (te2,uy2,di2,sy,sfy,ssy,swy,ysize(1),ysize(2),ysize(3),0)
else
call deryy (te2,uy2,di2,sy,sfy,ssy,swy,ysize(1),ysize(2),ysize(3),0)
endif
endif
!-->for uz
if (istret.ne.0) then
if(jLES==1) then
call deryy_iles (tf2,uz2,di2,sy,sfyp,ssyp,swyp,ysize(1),ysize(2),ysize(3),1)
else
call deryy (tf2,uz2,di2,sy,sfyp,ssyp,swyp,ysize(1),ysize(2),ysize(3),1)
endif
call dery (tj2,uz2,di2,sy,ffyp,fsyp,fwyp,ppy,ysize(1),ysize(2),ysize(3),1)
do k=1,ysize(3)
do j=1,ysize(2)
do i=1,ysize(1)
tf2(i,j,k)=tf2(i,j,k)*pp2y(j)-pp4y(j)*tj2(i,j,k)
enddo
enddo
enddo
else
if(jLES==1) then
call deryy_iles (tf2,uz2,di2,sy,sfyp,ssyp,swyp,ysize(1),ysize(2),ysize(3),1)
else
call deryy (tf2,uz2,di2,sy,sfyp,ssyp,swyp,ysize(1),ysize(2),ysize(3),1)
endif
endif
ta2(:,:,:)=ta2(:,:,:)+td2(:,:,:)
tb2(:,:,:)=tb2(:,:,:)+te2(:,:,:)
tc2(:,:,:)=tc2(:,:,:)+tf2(:,:,:)
!WORK X-PENCILS
call transpose_y_to_x(ta2,ta1)
call transpose_y_to_x(tb2,tb1)
call transpose_y_to_x(tc2,tc1) !diff
call transpose_y_to_x(tg2,td1)
call transpose_y_to_x(th2,te1)
call transpose_y_to_x(ti2,tf1) !conv
tg1(:,:,:)=td1(:,:,:)
th1(:,:,:)=te1(:,:,:)
ti1(:,:,:)=tf1(:,:,:)
!DIFFUSIVE TERMS IN X
if(jLES==1) then
call derxx_iles (td1,ux1,di1,sx,sfx ,ssx ,swx ,xsize(1),xsize(2),xsize(3),0)
call derxx_iles (te1,uy1,di1,sx,sfxp,ssxp,swxp,xsize(1),xsize(2),xsize(3),1)
call derxx_iles (tf1,uz1,di1,sx,sfxp,ssxp,swxp,xsize(1),xsize(2),xsize(3),1)
else
call derxx (td1,ux1,di1,sx,sfx ,ssx ,swx ,xsize(1),xsize(2),xsize(3),0)
call derxx (te1,uy1,di1,sx,sfxp,ssxp,swxp,xsize(1),xsize(2),xsize(3),1)
call derxx (tf1,uz1,di1,sx,sfxp,ssxp,swxp,xsize(1),xsize(2),xsize(3),1)
endif
ta1(:,:,:)=ta1(:,:,:)+td1(:,:,:)
tb1(:,:,:)=tb1(:,:,:)+te1(:,:,:)
tc1(:,:,:)=tc1(:,:,:)+tf1(:,:,:)
if (iabl==1) then
! In case of ABL set to zero the SGS model at level 1 (This will be computed later by the
! SGS wall stress model
if (xstart(2)==1) then
sgsx1(:,1,:)=0.
sgsy1(:,1,:)=0.
sgsz1(:,1,:)=0.
endif
endif
!FINAL SUM: DIFF TERMS + CONV TERMS
if(jLES==0) then ! DNS
ta1(:,:,:)=xnu*ta1(:,:,:)-tg1(:,:,:)
tb1(:,:,:)=xnu*tb1(:,:,:)-th1(:,:,:)
tc1(:,:,:)=xnu*tc1(:,:,:)-ti1(:,:,:)
elseif (jLES==1) then ! implicit LES
if(dynhypvisc==1) then ! use the dynamic definition of nu0/nu
ta1(:,:,:)=xnu*shrt_coeff(:,:,:)*ta1(:,:,:)-tg1(:,:,:)
tb1(:,:,:)=xnu*shrt_coeff(:,:,:)*tb1(:,:,:)-th1(:,:,:)
tc1(:,:,:)=xnu*shrt_coeff(:,:,:)*tc1(:,:,:)-ti1(:,:,:)
else
ta1(:,:,:)=xnu*ta1(:,:,:)-tg1(:,:,:)
tb1(:,:,:)=xnu*tb1(:,:,:)-th1(:,:,:)
tc1(:,:,:)=xnu*tc1(:,:,:)-ti1(:,:,:)
endif
elseif (jLES==2) then ! Classic Smagorisnky Model
ta1(:,:,:)=xnu*ta1(:,:,:)-tg1(:,:,:)+sgsx1(:,:,:)
tb1(:,:,:)=xnu*tb1(:,:,:)-th1(:,:,:)+sgsy1(:,:,:)
tc1(:,:,:)=xnu*tc1(:,:,:)-ti1(:,:,:)+sgsz1(:,:,:)
elseif (jLES==3) then ! WALE
ta1(:,:,:)=xnu*ta1(:,:,:)-tg1(:,:,:)+sgsx1(:,:,:)
tb1(:,:,:)=xnu*tb1(:,:,:)-th1(:,:,:)+sgsy1(:,:,:)
tc1(:,:,:)=xnu*tc1(:,:,:)-ti1(:,:,:)+sgsz1(:,:,:)
elseif(jLES==4) then ! dynamic Smagorinsky
ta1(:,:,:)=xnu*ta1(:,:,:)-tg1(:,:,:)+sgsx1(:,:,:)
tb1(:,:,:)=xnu*tb1(:,:,:)-th1(:,:,:)+sgsy1(:,:,:)
tc1(:,:,:)=xnu*tc1(:,:,:)-ti1(:,:,:)+sgsz1(:,:,:)
else
if(nrank==0) then
write(*,*) 'Dont know what to do. This LES model is not defined'
write(*,*) 'Choose between : 0--> DNS'
write(*,*) ' : 1--> Implicit SVV'
write(*,*) ' : 2--> standard Smagorinsky'
write(*,*) ' : 3--> Wall-Adaptive LES'
write(*,*) ' : 4--> Scale-invariant dynamic smagorinsky model'
endif
stop
endif
!***************************************
! Compute additional Models
!***************************************
!
if (iabl==1) then
call wall_sgs(ux1,uy1,uz1,nut1,sxy1,syz1,tauwallxy1,tauwallzy1,wallfluxx1,wallfluxy1,wallfluxz1)
ta1(:,:,:)=ta1(:,:,:)+wallfluxx1(:,:,:)
tb1(:,:,:)=tb1(:,:,:)+wallfluxy1(:,:,:)
tc1(:,:,:)=tc1(:,:,:)+wallfluxz1(:,:,:)
endif
! Buoyancy Effects
if (ibuoyancy==1) then
! Average quantities over the x-z plane
deltaphi1(:,:,:)=(phi1(:,:,:)-TempRef)/TempRef
tb1(:,:,:)=tb1(:,:,:) + 9.81*deltaphi1(:,:,:)
endif
if (IPressureGradient==1) then
ta1(:,:,:)=ta1(:,:,:)+ustar**2./dBL ! Apply a pressure gradient in the stream-wise direction
endif
! Coriolis Effects
if (icoriolis==1) then
ta1(:,:,:)=ta1(:,:,:)+CoriolisFreq*uz1(:,:,:) ! This is the stream-wise direction
tc1(:,:,:)=tc1(:,:,:)-CoriolisFreq*ux1(:,:,:) ! This is not the vertical direction but the lateral horizontal
endif
if (idampingzone==1) then
lf=yly-dBL
do k=1,xsize(3)
do j=1,xsize(2)
do i=1,xsize(1)
if (istret.eq.0) y=(j+xstart(2)-1-1)*dy
if (istret.ne.0) y=yp(j+xstart(2)-1)
x=(i+xstart(1)-1-1)*dx
if (y>=1.1*dBL) then
lambda=1.0
elseif (y>=dBL.and.y<1.1*dBL) then
lambda=0.5*(1-cos(pi*(y-dBL)/(0.1*dBL)))
else
lambda=0.
endif
!if (y>=yly-(yly-dBL)/4.) then
! lambda=1.0
!elseif (y>=dBL.and.y<yly-(yly-dBL)/4.) then
! lambda=0.5*(1.-cos(pi*(y-dBL)/(yly-(yly-dBL)/4.-dBL)))
!else
! lambda=0.
!endif
if(ifringeregion==1.and.x.ge.xlx/4.) lambda=0 ! Apply if using the fring region with half domain
ta1(i,j,k)=ta1(i,j,k)-0.5*ustar/dBL*lambda*(ux1(i,j,k)-UG(1))
tb1(i,j,k)=tb1(i,j,k)-0.5*ustar/dBL*lambda*(uy1(i,j,k)-UG(2))
tc1(i,j,k)=tc1(i,j,k)-0.5*ustar/dBL*lambda*(uz1(i,j,k)-UG(3))
enddo
enddo
enddo
endif
! Turbine forcing through an Actuator Line Model
if (ialm==1) then
ta1(:,:,:)=ta1(:,:,:)+FTx(:,:,:)
tb1(:,:,:)=tb1(:,:,:)+FTy(:,:,:)
tc1(:,:,:)=tc1(:,:,:)+FTz(:,:,:)
endif
! Turbine forcing through an actuator disc model
if (iadm==1) then
ta1(:,:,:)=ta1(:,:,:)+Fdiscx(:,:,:)
tb1(:,:,:)=tb1(:,:,:)+Fdiscy(:,:,:)
tc1(:,:,:)=tc1(:,:,:)+Fdiscz(:,:,:)
endif
if(itripping>0) then
ta1(:,:,:)=ta1(:,:,:)+Ftripx(:,:,:)
endif
end subroutine convdiff
!************************************************************
subroutine PotentialTemperature(ux1,uy1,uz1,nut1,phi1,phis1,phiss1,di1,ta1,tb1,tc1,td1,&
uy2,uz2,phi2,di2,ta2,tb2,tc2,td2,uz3,phi3,di3,ta3,tb3,tc3,epsi)
!************************************************************
USE param
USE decomp_2d
implicit none
real(mytype),dimension(xsize(1),xsize(2),xsize(3)) :: ux1,uy1,uz1,nut1,phi1,phis1,&
phiss1,di1,ta1,tb1,tc1,td1,epsi,sgsphi1
real(mytype),dimension(ysize(1),ysize(2),ysize(3)) :: uy2,uz2,phi2,nut2,di2,ta2,tb2,tc2,td2,sgsphi2
real(mytype),dimension(zsize(1),zsize(2),zsize(3)) :: uz3,phi3,nut3,di3,ta3,tb3,tc3,td3,sgsphi3
integer :: ijk,nvect1,nvect2,nvect3,i,j,k,nxyz
real(mytype) :: x,y,z, PsiH, delta
!X PENCILS
ta1(:,:,:)=ux1(:,:,:)*phi1(:,:,:)
call derx (tb1,ta1,di1,sx,ffx,fsx,fwx,xsize(1),xsize(2),xsize(3),0)
call derx (tc1,nut1,di1,sx,ffx,fsx,fwx,xsize(1),xsize(2),xsize(3),0)
call derx (td1,phi1,di1,sx,ffx,fsx,fwx,xsize(1),xsize(2),xsize(3),0)
if (jles==1) then
call derxx_iles (ta1,phi1,di1,sx,sfxp,ssxp,swxp,xsize(1),xsize(2),xsize(3),1)
else
call derxx (ta1,phi1,di1,sx,sfxp,ssxp,swxp,xsize(1),xsize(2),xsize(3),1)
sgsphi1=tc1/Pr*td1+nut1/Pr*ta1
endif
call transpose_x_to_y(phi1,phi2)
call transpose_x_to_y(uy1,uy2)
call transpose_x_to_y(uz1,uz2)
!For explicit LES
call transpose_x_to_y(nut1,nut2)
call transpose_x_to_y(sgsphi1,sgsphi2)
!Y PENCILS
ta2(:,:,:)=uy2(:,:,:)*phi2(:,:,:)
call dery(tb2,ta2,di2,sy,ffy,fsy,fwy,ppy,ysize(1),ysize(2),ysize(3),0)
call dery(td2,nut2,di2,sy,ffy,fsy,fwy,ppy,ysize(1),ysize(2),ysize(3),0)
if (istret.ne.0) then
call dery(tc2,phi2,di2,sy,ffy,fsy,fwy,ppy,ysize(1),ysize(2),ysize(3),0)
if (jles==1) then
call deryy_iles (ta2,phi2,di2,sy,sfyp,ssyp,swyp,ysize(1),ysize(2),ysize(3),1)
else
call deryy (ta2,phi2,di2,sy,sfyp,ssyp,swyp,ysize(1),ysize(2),ysize(3),1)
endif
do k=1,ysize(3)
do j=1,ysize(2)
do i=1,ysize(1)
ta2(i,j,k)=ta2(i,j,k)*pp2y(j)-pp4y(j)*tc2(i,j,k)
enddo
enddo
enddo
sgsphi2=sgsphi2+td2/Pr+nut1/Pr*ta2
else
if (jles==1) then
call deryy_iles (ta2,phi2,di2,sy,sfyp,ssyp,swyp,ysize(1),ysize(2),ysize(3),1)
else
call deryy (ta2,phi2,di2,sy,sfyp,ssyp,swyp,ysize(1),ysize(2),ysize(3),1)
sgsphi2=sgsphi2+td2/Pr*tc2+nut2/Pr*ta2
endif
endif
!Before applying the SGS model -- do the correction for ABL
if(iabl==1.and.jles.ge.2.and.ysize(2).eq.1) then
if (istret.ne.0) delta=(yp(2)-yp(1))/2.0
if (istret.eq.0) delta=dy/2.
do k=1,ysize(3)
do i=1,ysize(1)
PsiH=0!-7.8*delta/ObukhovL
sgsphi2(i,1,k) = -(-1./2.*(-2.*nut2(i,3,k)*tc2(i,3,k))/Pr+&
2.*(-2.*nut2(i,2,k)*tc2(i,2,k))/Pr-3./2.*(u_shear*k_roughness*(phi2(i,1,k)-0.5*(phi2(i,1,k)+phi2(i,2,k)))/(log(delta/z_zero)-PsiH)))/(2.*delta)
enddo
enddo
endif
call transpose_y_to_z(phi2,phi3)
call transpose_y_to_z(uz2,uz3)
!For explicit LES
call transpose_y_to_z(nut2,nut3)
call transpose_y_to_z(sgsphi2,sgsphi3)
!Z PENCILS
ta3(:,:,:)=uz3(:,:,:)*phi3(:,:,:)
call derz(tb3,ta3,di3,sz,ffz,fsz,fwz,zsize(1),zsize(2),zsize(3),0)
call derz(tc3,nut3,di3,sz,ffz,fsz,fwz,zsize(1),zsize(2),zsize(3),0)
call derz(td3,phi3,di3,sz,ffz,fsz,fwz,zsize(1),zsize(2),zsize(3),0)
if (jles==1) then
call derzz_iles (ta3,phi3,di3,sz,sfzp,sszp,swzp,zsize(1),zsize(2),zsize(3),1)
else
call derzz (ta3,phi3,di3,sz,sfzp,sszp,swzp,zsize(1),zsize(2),zsize(3),1)
sgsphi3=sgsphi3+tc3/Pr*td3+nut3/Pr*ta3
endif
call transpose_z_to_y(ta3,tc2)
call transpose_z_to_y(tb3,td2)
!Y PENCILS ADD TERMS
tc2(:,:,:)=tc2(:,:,:)+ta2(:,:,:)
td2(:,:,:)=td2(:,:,:)+tb2(:,:,:)
call transpose_y_to_x(tc2,tc1)
call transpose_y_to_x(td2,td1)
call transpose_z_to_y(sgsphi3,sgsphi2)
call transpose_y_to_x(sgsphi2,sgsphi1)
!X PENCILS ADD TERMS
ta1(:,:,:)=ta1(:,:,:)+tc1(:,:,:) !SECOND DERIVATIVE
tb1(:,:,:)=tb1(:,:,:)+td1(:,:,:) !FIRST DERIVATIVE
if(jles.le.1) then
ta1(:,:,:)=xnu/Pr*ta1(:,:,:)-tb1(:,:,:)
else
ta1(:,:,:)=xnu/Pr*ta1(:,:,:)-tb1(:,:,:)+sgsphi1(:,:,:)
endif
!TIME ADVANCEMENT (Doing it locally)
if ((nscheme.eq.1).or.(nscheme.eq.2)) then
if ((nscheme.eq.1.and.itime.eq.1.and.ilit.eq.0).or.&
(nscheme.eq.2.and.itr.eq.1)) then
phi1(:,:,:)=gdt(itr)*ta1(:,:,:)+phi1(:,:,:)
phis1(:,:,:)=ta1(:,:,:)
else
phi1(:,:,:)=adt(itr)*ta1(:,:,:)+bdt(itr)*phis1(:,:,:)+phi1(:,:,:)
phis1(:,:,:)=ta1(:,:,:)
endif
endif
if (nscheme.eq.3) then
endif
if (nscheme==4) then
if ((itime.eq.1).and.(ilit.eq.0)) then
if (nrank==0) print *,'start with Euler',itime
do ijk=1,nxyz !start with Euler
phi1(ijk,1,1)=dt*ta1(ijk,1,1)+phi1(ijk,1,1)
phis1(ijk,1,1)=ta1(ijk,1,1)
enddo
else
if ((itime.eq.2).and.(ilit.eq.0)) then
if (nrank==0) print *,'then with AB2',itime
do ijk=1,nxyz
phi1(ijk,1,1)=1.5*dt*ta1(ijk,1,1)-0.5*dt*phis1(ijk,1,1)+phi1(ijk,1,1)
phiss1(ijk,1,1)=phis1(ijk,1,1)
phis1(ijk,1,1)=ta1(ijk,1,1)
enddo
else
do ijk=1,nxyz
phi1(ijk,1,1)=adt(itr)*ta1(ijk,1,1)+bdt(itr)*phis1(ijk,1,1)+&
cdt(itr)*phiss1(ijk,1,1)+phi1(ijk,1,1)
phiss1(ijk,1,1)=phis1(ijk,1,1)
phis1(ijk,1,1)=ta1(ijk,1,1)
enddo
endif
endif
endif
end subroutine PotentialTemperature