-
Notifications
You must be signed in to change notification settings - Fork 269
/
Copy patheval.py
145 lines (119 loc) · 5.56 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""
Authors: Wouter Van Gansbeke, Simon Vandenhende
Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
"""
import argparse
import torch
import yaml
from termcolor import colored
from utils.common_config import get_val_dataset, get_val_transformations, get_val_dataloader,\
get_model
from utils.evaluate_utils import get_predictions, hungarian_evaluate
from utils.memory import MemoryBank
from utils.utils import fill_memory_bank
from PIL import Image
FLAGS = argparse.ArgumentParser(description='Evaluate models from the model zoo')
FLAGS.add_argument('--config_exp', help='Location of config file')
FLAGS.add_argument('--model', help='Location where model is saved')
FLAGS.add_argument('--visualize_prototypes', action='store_true',
help='Show the prototpye for each cluster')
args = FLAGS.parse_args()
def main():
# Read config file
print(colored('Read config file {} ...'.format(args.config_exp), 'blue'))
with open(args.config_exp, 'r') as stream:
config = yaml.safe_load(stream)
config['batch_size'] = 512 # To make sure we can evaluate on a single 1080ti
print(config)
# Get dataset
print(colored('Get validation dataset ...', 'blue'))
transforms = get_val_transformations(config)
dataset = get_val_dataset(config, transforms)
dataloader = get_val_dataloader(config, dataset)
print('Number of samples: {}'.format(len(dataset)))
# Get model
print(colored('Get model ...', 'blue'))
model = get_model(config)
print(model)
# Read model weights
print(colored('Load model weights ...', 'blue'))
state_dict = torch.load(args.model, map_location='cpu')
if config['setup'] in ['simclr', 'moco', 'selflabel']:
model.load_state_dict(state_dict)
elif config['setup'] == 'scan':
model.load_state_dict(state_dict['model'])
else:
raise NotImplementedError
# CUDA
model.cuda()
# Perform evaluation
if config['setup'] in ['simclr', 'moco']:
print(colored('Perform evaluation of the pretext task (setup={}).'.format(config['setup']), 'blue'))
print('Create Memory Bank')
if config['setup'] == 'simclr': # Mine neighbors after MLP
memory_bank = MemoryBank(len(dataset), config['model_kwargs']['features_dim'],
config['num_classes'], config['criterion_kwargs']['temperature'])
else: # Mine neighbors before MLP
memory_bank = MemoryBank(len(dataset), config['model_kwargs']['features_dim'],
config['num_classes'], config['temperature'])
memory_bank.cuda()
print('Fill Memory Bank')
fill_memory_bank(dataloader, model, memory_bank)
print('Mine the nearest neighbors')
for topk in [1, 5, 20]: # Similar to Fig 2 in paper
_, acc = memory_bank.mine_nearest_neighbors(topk)
print('Accuracy of top-{} nearest neighbors on validation set is {:.2f}'.format(topk, 100*acc))
elif config['setup'] in ['scan', 'selflabel']:
print(colored('Perform evaluation of the clustering model (setup={}).'.format(config['setup']), 'blue'))
head = state_dict['head'] if config['setup'] == 'scan' else 0
predictions, features = get_predictions(config, dataloader, model, return_features=True)
clustering_stats = hungarian_evaluate(head, predictions, dataset.classes,
compute_confusion_matrix=True)
print(clustering_stats)
if args.visualize_prototypes:
prototype_indices = get_prototypes(config, predictions[head], features, model)
visualize_indices(prototype_indices, dataset, clustering_stats['hungarian_match'])
else:
raise NotImplementedError
@torch.no_grad()
def get_prototypes(config, predictions, features, model, topk=10):
import torch.nn.functional as F
# Get topk most certain indices and pred labels
print('Get topk')
probs = predictions['probabilities']
n_classes = probs.shape[1]
dims = features.shape[1]
max_probs, pred_labels = torch.max(probs, dim = 1)
indices = torch.zeros((n_classes, topk))
for pred_id in range(n_classes):
probs_copy = max_probs.clone()
mask_out = ~(pred_labels == pred_id)
probs_copy[mask_out] = -1
conf_vals, conf_idx = torch.topk(probs_copy, k = topk, largest = True, sorted = True)
indices[pred_id, :] = conf_idx
# Get corresponding features
selected_features = torch.index_select(features, dim=0, index=indices.view(-1).long())
selected_features = selected_features.unsqueeze(1).view(n_classes, -1, dims)
# Get mean feature per class
mean_features = torch.mean(selected_features, dim=1)
# Get min distance wrt to mean
diff_features = selected_features - mean_features.unsqueeze(1)
diff_norm = torch.norm(diff_features, 2, dim=2)
# Get final indices
_, best_indices = torch.min(diff_norm, dim=1)
one_hot = F.one_hot(best_indices.long(), indices.size(1)).byte()
proto_indices = torch.masked_select(indices.view(-1), one_hot.view(-1))
proto_indices = proto_indices.int().tolist()
return proto_indices
def visualize_indices(indices, dataset, hungarian_match):
import matplotlib.pyplot as plt
import numpy as np
for idx in indices:
img = np.array(dataset.get_image(idx)).astype(np.uint8)
img = Image.fromarray(img)
plt.figure()
plt.axis('off')
plt.imshow(img)
plt.show()
if __name__ == "__main__":
main()