-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
374 lines (303 loc) · 13.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import copy
import importlib
import itertools
from typing import Tuple, Dict, Callable, List, Optional, Union, Sequence
import numpy as np
# Useful types
Vector = Union[np.ndarray, Sequence[float]]
Matrix = Union[np.ndarray, Sequence[Sequence[float]]]
Interval = Union[np.ndarray,
Tuple[Vector, Vector],
Tuple[Matrix, Matrix],
Tuple[float, float],
List[Vector],
List[Matrix],
List[float]]
def do_every(duration: float, timer: float) -> bool:
return duration < timer
def lmap(v: float, x: Interval, y: Interval) -> float:
"""Linear map of value v with range x to desired range y."""
return y[0] + (v - x[0]) * (y[1] - y[0]) / (x[1] - x[0])
def get_class_path(cls: Callable) -> str:
return cls.__module__ + "." + cls.__qualname__
def class_from_path(path: str) -> Callable:
module_name, class_name = path.rsplit(".", 1)
class_object = getattr(importlib.import_module(module_name), class_name)
return class_object
def constrain(x: float, a: float, b: float) -> np.ndarray:
return np.clip(x, a, b)
def not_zero(x: float, eps: float = 1e-2) -> float:
if abs(x) > eps:
return x
elif x >= 0:
return eps
else:
return -eps
def wrap_to_pi(x: float) -> float:
return ((x + np.pi) % (2 * np.pi)) - np.pi
def point_in_rectangle(point: Vector, rect_min: Vector, rect_max: Vector) -> bool:
"""
Check if a point is inside a rectangle
:param point: a point (x, y)
:param rect_min: x_min, y_min
:param rect_max: x_max, y_max
"""
return rect_min[0] <= point[0] <= rect_max[0] and rect_min[1] <= point[1] <= rect_max[1]
def point_in_rotated_rectangle(point: np.ndarray, center: np.ndarray, length: float, width: float, angle: float) \
-> bool:
"""
Check if a point is inside a rotated rectangle
:param point: a point
:param center: rectangle center
:param length: rectangle length
:param width: rectangle width
:param angle: rectangle angle [rad]
:return: is the point inside the rectangle
"""
c, s = np.cos(angle), np.sin(angle)
r = np.array([[c, -s], [s, c]])
ru = r.dot(point - center)
return point_in_rectangle(ru, (-length/2, -width/2), (length/2, width/2))
def point_in_ellipse(point: Vector, center: Vector, angle: float, length: float, width: float) -> bool:
"""
Check if a point is inside an ellipse
:param point: a point
:param center: ellipse center
:param angle: ellipse main axis angle
:param length: ellipse big axis
:param width: ellipse small axis
:return: is the point inside the ellipse
"""
c, s = np.cos(angle), np.sin(angle)
r = np.matrix([[c, -s], [s, c]])
ru = r.dot(point - center)
return np.sum(np.square(ru / np.array([length, width]))) < 1
def rotated_rectangles_intersect(rect1: Tuple[Vector, float, float, float],
rect2: Tuple[Vector, float, float, float]) -> bool:
"""
Do two rotated rectangles intersect?
:param rect1: (center, length, width, angle)
:param rect2: (center, length, width, angle)
:return: do they?
"""
return has_corner_inside(rect1, rect2) or has_corner_inside(rect2, rect1)
def rect_corners(center: np.ndarray, length: float, width: float, angle: float,
include_midpoints: bool = False, include_center: bool = False) -> List[np.ndarray]:
"""
Returns the positions of the corners of a rectangle.
:param center: the rectangle center
:param length: the rectangle length
:param width: the rectangle width
:param angle: the rectangle angle
:param include_midpoints: include middle of edges
:param include_center: include the center of the rect
:return: a list of positions
"""
center = np.array(center)
half_l = np.array([length/2, 0])
half_w = np.array([0, width/2])
corners = [- half_l - half_w,
- half_l + half_w,
+ half_l + half_w,
+ half_l - half_w]
if include_center:
corners += [[0, 0]]
if include_midpoints:
corners += [- half_l, half_l, -half_w, half_w]
c, s = np.cos(angle), np.sin(angle)
rotation = np.array([[c, -s], [s, c]])
return (rotation @ np.array(corners).T).T + np.tile(center, (len(corners), 1))
def has_corner_inside(rect1: Tuple[Vector, float, float, float],
rect2: Tuple[Vector, float, float, float]) -> bool:
"""
Check if rect1 has a corner inside rect2
:param rect1: (center, length, width, angle)
:param rect2: (center, length, width, angle)
"""
return any([point_in_rotated_rectangle(p1, *rect2)
for p1 in rect_corners(*rect1, include_midpoints=True, include_center=True)])
def project_polygon(polygon: Vector, axis: Vector) -> Tuple[float, float]:
min_p, max_p = None, None
for p in polygon:
projected = p.dot(axis)
if min_p is None or projected < min_p:
min_p = projected
if max_p is None or projected > max_p:
max_p = projected
return min_p, max_p
def interval_distance(min_a: float, max_a: float, min_b: float, max_b: float):
"""
Calculate the distance between [minA, maxA] and [minB, maxB]
The distance will be negative if the intervals overlap
"""
return min_b - max_a if min_a < min_b else min_a - max_b
def are_polygons_intersecting(a: Vector, b: Vector,
displacement_a: Vector, displacement_b: Vector) \
-> Tuple[bool, bool, Optional[np.ndarray]]:
"""
Checks if the two polygons are intersecting.
See https://www.codeproject.com/Articles/15573/2D-Polygon-Collision-Detection
:param a: polygon A, as a list of [x, y] points
:param b: polygon B, as a list of [x, y] points
:param displacement_a: velocity of the polygon A
:param displacement_b: velocity of the polygon B
:return: are intersecting, will intersect, translation vector
"""
intersecting = will_intersect = True
min_distance = np.inf
translation, translation_axis = None, None
for polygon in [a, b]:
for p1, p2 in zip(polygon, polygon[1:]):
normal = np.array([-p2[1] + p1[1], p2[0] - p1[0]])
normal /= np.linalg.norm(normal)
min_a, max_a = project_polygon(a, normal)
min_b, max_b = project_polygon(b, normal)
if interval_distance(min_a, max_a, min_b, max_b) > 0:
intersecting = False
velocity_projection = normal.dot(displacement_a - displacement_b)
if velocity_projection < 0:
min_a += velocity_projection
else:
max_a += velocity_projection
distance = interval_distance(min_a, max_a, min_b, max_b)
if distance > 0:
will_intersect = False
if not intersecting and not will_intersect:
break
if abs(distance) < min_distance:
min_distance = abs(distance)
d = a[:-1].mean(axis=0) - b[:-1].mean(axis=0) # center difference
translation_axis = normal if d.dot(normal) > 0 else -normal
if will_intersect:
translation = min_distance * translation_axis
return intersecting, will_intersect, translation
def confidence_ellipsoid(data: Dict[str, np.ndarray], lambda_: float = 1e-5, delta: float = 0.1, sigma: float = 0.1,
param_bound: float = 1.0) -> Tuple[np.ndarray, np.ndarray, float]:
"""
Compute a confidence ellipsoid over the parameter theta, where y = theta^T phi
:param data: a dictionary {"features": [phi_0,...,phi_N], "outputs": [y_0,...,y_N]}
:param lambda_: l2 regularization parameter
:param delta: confidence level
:param sigma: noise covariance
:param param_bound: an upper-bound on the parameter norm
:return: estimated theta, Gramian matrix G_N_lambda, radius beta_N
"""
phi = np.array(data["features"])
y = np.array(data["outputs"])
g_n_lambda = 1/sigma * np.transpose(phi) @ phi + lambda_ * np.identity(phi.shape[-1])
theta_n_lambda = np.linalg.inv(g_n_lambda) @ np.transpose(phi) @ y / sigma
d = theta_n_lambda.shape[0]
beta_n = np.sqrt(2*np.log(np.sqrt(np.linalg.det(g_n_lambda) / lambda_ ** d) / delta)) + \
np.sqrt(lambda_*d) * param_bound
return theta_n_lambda, g_n_lambda, beta_n
def confidence_polytope(data: dict, parameter_box: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray, float]:
"""
Compute a confidence polytope over the parameter theta, where y = theta^T phi
:param data: a dictionary {"features": [phi_0,...,phi_N], "outputs": [y_0,...,y_N]}
:param parameter_box: a box [theta_min, theta_max] containing the parameter theta
:return: estimated theta, polytope vertices, Gramian matrix G_N_lambda, radius beta_N
"""
param_bound = np.amax(np.abs(parameter_box))
theta_n_lambda, g_n_lambda, beta_n = confidence_ellipsoid(data, param_bound=param_bound)
values, pp = np.linalg.eig(g_n_lambda)
radius_matrix = np.sqrt(beta_n) * np.linalg.inv(pp) @ np.diag(np.sqrt(1 / values))
h = np.array(list(itertools.product([-1, 1], repeat=theta_n_lambda.shape[0])))
d_theta = np.array([radius_matrix @ h_k for h_k in h])
# Clip the parameter and confidence region within the prior parameter box.
theta_n_lambda = np.clip(theta_n_lambda, parameter_box[0], parameter_box[1])
for k, _ in enumerate(d_theta):
d_theta[k] = np.clip(d_theta[k], parameter_box[0] - theta_n_lambda, parameter_box[1] - theta_n_lambda)
return theta_n_lambda, d_theta, g_n_lambda, beta_n
def is_valid_observation(y: np.ndarray, phi: np.ndarray, theta: np.ndarray, gramian: np.ndarray,
beta: float, sigma: float = 0.1) -> bool:
"""
Check if a new observation (phi, y) is valid according to a confidence ellipsoid on theta.
:param y: observation
:param phi: feature
:param theta: estimated parameter
:param gramian: Gramian matrix
:param beta: ellipsoid radius
:param sigma: noise covariance
:return: validity of the observation
"""
y_hat = np.tensordot(theta, phi, axes=[0, 0])
error = np.linalg.norm(y - y_hat)
eig_phi, _ = np.linalg.eig(phi.transpose() @ phi)
eig_g, _ = np.linalg.eig(gramian)
error_bound = np.sqrt(np.amax(eig_phi) / np.amin(eig_g)) * beta + sigma
return error < error_bound
def is_consistent_dataset(data: dict, parameter_box: np.ndarray = None) -> bool:
"""
Check whether a dataset {phi_n, y_n} is consistent
The last observation should be in the confidence ellipsoid obtained by the N-1 first observations.
:param data: a dictionary {"features": [phi_0,...,phi_N], "outputs": [y_0,...,y_N]}
:param parameter_box: a box [theta_min, theta_max] containing the parameter theta
:return: consistency of the dataset
"""
train_set = copy.deepcopy(data)
y, phi = train_set["outputs"].pop(-1), train_set["features"].pop(-1)
y, phi = np.array(y)[..., np.newaxis], np.array(phi)[..., np.newaxis]
if train_set["outputs"] and train_set["features"]:
theta, _, gramian, beta = confidence_polytope(train_set, parameter_box=parameter_box)
return is_valid_observation(y, phi, theta, gramian, beta)
else:
return True
def near_split(x, num_bins=None, size_bins=None):
"""
Split a number into several bins with near-even distribution.
You can either set the number of bins, or their size.
The sum of bins always equals the total.
:param x: number to split
:param num_bins: number of bins
:param size_bins: size of bins
:return: list of bin sizes
"""
if num_bins:
quotient, remainder = divmod(x, num_bins)
return [quotient + 1] * remainder + [quotient] * (num_bins - remainder)
elif size_bins:
return near_split(x, num_bins=int(np.ceil(x / size_bins)))
def distance_to_circle(center, radius, direction):
scaling = radius * np.ones((2, 1))
a = np.linalg.norm(direction / scaling) ** 2
b = -2 * np.dot(np.transpose(center), direction / np.square(scaling))
c = np.linalg.norm(center / scaling) ** 2 - 1
root_inf, root_sup = solve_trinom(a, b, c)
if root_inf and root_inf > 0:
distance = root_inf
elif root_sup and root_sup > 0:
distance = 0
else:
distance = np.infty
return distance
def distance_to_rect(line: Tuple[np.ndarray, np.ndarray], rect: List[np.ndarray]):
"""
Compute the intersection between a line segment and a rectangle.
See https://math.stackexchange.com/a/2788041.
:param line: a line segment [R, Q]
:param rect: a rectangle [A, B, C, D]
:return: the distance between R and the intersection of the segment RQ with the rectangle ABCD
"""
r, q = line
a, b, c, d = rect
u = b - a
v = d - a
u, v = u/np.linalg.norm(u), v/np.linalg.norm(v)
rqu = (q - r) @ u
rqv = (q - r) @ v
interval_1 = [(a - r) @ u / rqu, (b - r) @ u / rqu]
interval_2 = [(a - r) @ v / rqv, (d - r) @ v / rqv]
interval_1 = interval_1 if rqu >= 0 else list(reversed(interval_1))
interval_2 = interval_2 if rqv >= 0 else list(reversed(interval_2))
if interval_distance(*interval_1, *interval_2) <= 0 \
and interval_distance(0, 1, *interval_1) <= 0 \
and interval_distance(0, 1, *interval_2) <= 0:
return max(interval_1[0], interval_2[0]) * np.linalg.norm(q - r)
else:
return np.inf
def solve_trinom(a, b, c):
delta = b ** 2 - 4 * a * c
if delta >= 0:
return (-b - np.sqrt(delta)) / (2 * a), (-b + np.sqrt(delta)) / (2 * a)
else:
return None, None