-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtest.py
126 lines (110 loc) · 5.34 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from __future__ import print_function
import argparse
import yaml
import os
import shutil
import torch
from mmcv import Config, mkdir_or_exist
from models.Networks import *
from utils.env import get_root_logger, set_default_configs, load_checkpoint, init_dist
from datasets.builder import build_datasets
from attacks.pgd_attack import eval_adv_test_whitebox_pgd, eval_clean_only
from attacks.auto_attack import eval_auto_attack
from datasets.loader.build_loader import build_dataloader
from attacks.other_attacks import eval_adv_test_whitebox_full
parser = argparse.ArgumentParser(description='PyTorch CIFAR PGD Attack Evaluation')
parser.add_argument('config',
default='./configs/cifar10_plain.yaml',
help='path to config file')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--gpu', default=0, type=int,
help='which gpu to use')
parser.add_argument('--rename', '-r', action='store_true', default=False,
help='whether allow renaing the checkpoints parameter to match')
parser.add_argument('--from_file', '-f', action='store_true', default=False,
help='analysis data from file')
parser.add_argument('--eval_train_data', action='store_true', default=False,
help='whether eval train data')
parser.add_argument('--save_features', '-s', action='store_true', default=True,
help='whether save features')
parser.add_argument('--individual', action='store_true', default=False,
help='whether to perform individual aa')
parser.add_argument('--attacker', '-a', default='ALL', # ['ALL', 'PGD']
help='which attack to perform')
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
# settings
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
# set configs
with open(args.config) as cf:
cfgs = Config(yaml.safe_load(cf))
mkdir_or_exist(cfgs.model_dir)
shutil.copyfile(args.config, os.path.join(cfgs.model_dir, "config_test.yaml"))
set_default_configs(cfgs)
# setup logger
logger = get_root_logger(cfgs.log_level, cfgs.model_dir)
logger.info("Loading config file from {}".format(args.config))
logger.info("Work_dir: {}".format(cfgs.model_dir))
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launche)
def main():
# set up data loader
logger.info("Building test datasets {}".format(cfgs.dataset))
num_classes=cfgs.num_classes
trainset, samples_per_cls = build_datasets(name=cfgs.dataset, mode='train',
num_classes=num_classes,
imbalance_ratio=cfgs.imbalance_ratio,
root='../data')
train_loader = build_dataloader(trainset, imgs_per_gpu=cfgs.test_batch_size, dist=False, shuffle=False)
testset, _ = build_datasets(name=cfgs.dataset, mode='test',
num_classes=num_classes, root='../data')
test_loader = torch.utils.data.DataLoader(testset, batch_size=cfgs.test_batch_size, shuffle=False, **kwargs)
if args.eval_train_data: # for some statistics
mode = 'train'
loader = train_loader
else:
mode = 'test'
loader = test_loader
if cfgs.white_box_attack:
# white-box attack
logger.info('pgd white-box attack')
logger.info('Loading from {}'.format(cfgs.model_path))
model = Networks(cfgs, num_classes=num_classes, samples_per_cls=samples_per_cls).to(device)
# load checkpoint
load_checkpoint(model, logger, cfgs.model_path, rename=args.rename)
model.eval()
eval_clean_only(model=model, device=device, logger=logger, test_loader=loader, cfgs=cfgs)
if args.attacker == 'PGD':
# PGD Attack
eval_adv_test_whitebox_pgd(model, device, cfgs, logger, loader, num_classes,
targeted=cfgs.targeted, save_features=args.save_features,
mode=mode)
elif args.attacker == 'ALL':
# CW Attack
eval_adv_test_whitebox_full(model, cfgs, device, logger, loader, 'CW')
# MIM Attack
eval_adv_test_whitebox_full(model, cfgs, device, logger, loader, 'MIM')
# Auto Attack
eval_auto_attack(model, device, cfgs, logger, loader, individual=args.individual)
# PGD Attack
# eval_adv_test_whitebox_full(model, cfgs, device, logger, loader, 'PGD', early_stop)
# PGD Attack
eval_adv_test_whitebox_pgd(model, device, cfgs, logger, loader, num_classes,
targeted=cfgs.targeted, save_features=args.save_features,
mode=mode , print_freq=100)
else:
raise NameError
else:
raise NotImplementedError
if __name__ == '__main__':
main()