POLab
2017/11/04
【回到首頁】
※參考資料: https://wenku.baidu.com/view/b34a6a8f680203d8ce2f24b1?pcf=2#8 、Gurobi-Python Interface Example
此為Gurobi內建的範例,在此加以整理介紹。
有兩項產品(鉛筆及鋼筆),分別由兩個城市生產(底特律及丹佛),並送至其他三個城市(波士頓、紐約及西雅圖),且必須滿足這三個 城市所需商品數量,每項商品運輸過程中不得超過每條路徑所能負荷的運能。
如下圖所示
每條路徑都有相對應的運輸成本及運能,分別表示為:
- (capacity , pencils transportation cost , pens transportation cost)
每個城市所擁有或所需要的商品數量:
- (pencils inflow , pens inflows)
- 最小化總運輸成本
- 經過每條路徑上的商品總數不得超過其所能負荷的運能
- 必須滿足波士頓、紐約及西雅圖所需的商品數量
-
arcs:所有可能的運輸路線
-
nodes:所有運輸路線上的城市
-
commodities:所有等待運輸的產品
-
cost[h,i,j]:商品h從城市i到城市j的運輸成本
-
capacity[i,j]:從城市i到城市j 的運能
-
inflow[h,j]:商品h在城市j的生產量或需求量
- flow[h,i,j]:商品h從城市i到城市j的運輸總量
※完整程式碼可點擊這裡
from gurobipy import *
- 定義兩種商品,以及包含五個節點六條路徑的網絡結構,形成commodities與nodes兩個列表
- 利用multidict函數初始化arcs與capacity,將arcs轉入tuplelist
commodities = ['Pencils', 'Pens']
nodes = ['Detroit', 'Denver', 'Boston', 'New York', 'Seattle']
arcs, capacity = multidict({
('Detroit', 'Boston'): 100,
('Detroit', 'New York'): 80,
('Detroit', 'Seattle'): 120,
('Denver', 'Boston'): 120,
('Denver', 'New York'): 120,
('Denver', 'Seattle'): 120 })
arcs = tuplelist(arcs)
- 建立每個商品在每條路徑的運輸成本數據,以及每個節點的生產或需求量
- 透過cost[h,i,j]來索引運輸成本
- 透過inflow[h,j]來索引每個節點的生產或需求量
cost = {
('Pencils', 'Detroit', 'Boston'): 10,
('Pencils', 'Detroit', 'New York'): 20,
('Pencils', 'Detroit', 'Seattle'): 60,
('Pencils', 'Denver', 'Boston'): 40,
('Pencils', 'Denver', 'New York'): 40,
('Pencils', 'Denver', 'Seattle'): 30,
('Pens', 'Detroit', 'Boston'): 20,
('Pens', 'Detroit', 'New York'): 20,
('Pens', 'Detroit', 'Seattle'): 80,
('Pens', 'Denver', 'Boston'): 60,
('Pens', 'Denver', 'New York'): 70,
('Pens', 'Denver', 'Seattle'): 30 }
inflow = {
('Pencils', 'Detroit'): 50,
('Pencils', 'Denver'): 60,
('Pencils', 'Boston'): -50,
('Pencils', 'New York'): -50,
('Pencils', 'Seattle'): -10,
('Pens', 'Detroit'): 60,
('Pens', 'Denver'): 40,
('Pens', 'Boston'): -40,
('Pens', 'New York'): -30,
('Pens', 'Seattle'): -30 }
# Create optimization model
m = Model('netflow')
- 創建字典flow來儲存決策變數
- 透過obj參數來設定決策變數的目標係數
# Create variables
flow = {}
for h in commodities:
for i,j in arcs:
flow[h,i,j] = m.addVar(ub=capacity[i,j], obj=cost[h,i,j],
name='flow_%s_%s_%s' % (h, i, j))
m.update()
m.update()
- 加入運輸容量限制式
- 加入流量守恆限制式
# Arc capacity constraints
for i,j in arcs:
m.addConstr(quicksum(flow[h,i,j] for h in commodities) <= capacity[i,j],
'cap_%s_%s' % (i, j))
# Flow conservation constraints
for h in commodities:
for j in nodes:
m.addConstr(
quicksum(flow[h,i,j] for i,j in arcs.select('*',j)) +
inflow[h,j] ==
quicksum(flow[h,j,k] for j,k in arcs.select(j,'*')),
'node_%s_%s' % (h, j))
- 透過getAttr()函數取得模型m中決策變數flow的屬性值x,也就是決策變數flow的最佳解
- getAttr()函數詳細內容可點擊這裡
# Compute optimal solution
m.optimize()
# Print solution
if m.status == GRB.Status.OPTIMAL:
solution = m.getAttr('x', flow)
for h in commodities:
print('\nOptimal flows for %s:' % h)
for i,j in arcs:
if solution[h,i,j] > 0:
print('%s -> %s: %g' % (i, j, solution[h,i,j]))
Optimize a model with 16 rows, 12 columns and 36 nonzeros
Coefficient statistics:
Matrix range [1e+00, 1e+00]
Objective range [1e+01, 8e+01]
Bounds range [8e+01, 1e+02]
RHS range [1e+01, 1e+02]
Presolve removed 16 rows and 12 columns
Presolve time: 0.00s
Presolve: All rows and columns removed
Iteration Objective Primal Inf. Dual Inf. Time
0 5.5000000e+03 0.000000e+00 0.000000e+00 0s
Solved in 0 iterations and 0.01 seconds
Optimal objective 5.500000000e+03
Optimal flows for Pencils:
Denver -> Seattle: 10
Denver -> New York: 50
Detroit -> Boston: 50
Optimal flows for Pens:
Denver -> Seattle: 30
Detroit -> New York: 30
Detroit -> Boston: 30
Denver -> Boston: 10