-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi_server.py
executable file
·86 lines (70 loc) · 2.83 KB
/
api_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os
import string
import json
import cv2
from datetime import datetime
from flask import Flask, request, make_response, jsonify
import urllib
from urllib.request import urlretrieve
from process import ApiExample
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
# Initialize our Flask application and the PyTorch model.
app = Flask(__name__)
# keep the source dictionary order
app.config['JSON_SORT_KEYS'] = False
# establish the core process
# hard example saving: if confidence less than threshold, save the image
HE_T = 0.8
# test the api available
@app.route('/')
def hello():
return "Hello"
@app.route('/classify_scene', methods=['POST'])
def classify_scene():
if request.method == 'POST':
# Initialize the data dictionary that will be returned
res_data = {'success': True, 'error_msg': '', 'scene_name': '', 'confidence': {}}
# get the image url
try:
# get the post data which is json format
image_url = json.loads(request.get_data().decode('utf-8'))['image_url']
# process chinese format string
image_url = urllib.parse.quote(image_url, safe=string.printable)
except Exception as e:
res_data['success'] = False
res_data['error_msg'] = 'Exception: ' + repr(e)
# download the image
if res_data['success']:
try:
image_root = os.path.join('hard_example_dataset', datetime.now().strftime("%Y%m%d"))
os.makedirs(image_root, exist_ok=True)
image_path = os.path.join(image_root, os.path.basename(image_url))
# using local image to debug if the network it's not available
# image_path = 'test_input/2020-03-29-1585423004059.jpg'
urlretrieve(image_url, image_path)
except Exception as e:
res_data['success'] = False
res_data['error_msg'] = 'Exception: ' + repr(e)
# process the image
if res_data['success']:
try:
image = cv2.imread(image_path, 1)
prob, scene_name = scene_rec(image)
res_data['scene_name'] = scene_name
res_data['confidence'] = "{0:.4f}".format(prob)
if prob > HE_T:
os.remove(image_path)
except Exception as e:
res_data['success'] = False
res_data['error_msg'] = 'Exception: ' + repr(e)
# return the result
rst = make_response(jsonify(res_data))
rst.headers['Access-Control-Allow-Origin'] = '*'
return rst
if __name__ == '__main__':
# select the gpu number
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
scene_rec = ApiExample()
app.run(host="0.0.0.0", port=10090, debug=False)