-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_inference.py
72 lines (57 loc) · 2.4 KB
/
run_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from __future__ import print_function, absolute_import, division
import os
import os.path as path
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from function_baseline.config import get_parse_args
from function_baseline.model_pos_preparation import model_pos_preparation, model_pos_preparation2
from common.viz import wrap_show3d_pose, wrap_show2d_pose
def main(args):
print('==> Using settings {}'.format(args))
stride = args.downsample
cudnn.benchmark = True
device = torch.device("cuda")
# print('==> Loading dataset...')
# data_dict = data_preparation(args)
print("==> Creating model...")
model_pos = model_pos_preparation2(args, device)
# Check if evaluate checkpoint file exist:
assert path.isfile(args.evaluate), '==> No checkpoint found at {}'.format(args.evaluate)
print("==> Loading checkpoint '{}'".format(args.evaluate))
ckpt = torch.load(args.evaluate)
try:
model_pos.load_state_dict(ckpt['state_dict'])
except:
model_pos.load_state_dict(ckpt['model_pos'])
model_pos.eval()
np_path = args.np_path
input_data = np.load(np_path)['pose2d']
# print('input_data', input_data)
print('input_data', input_data.shape)
print('==> Evaluating...')
wrap_show2d_pose(input_data, 'result/2d_'+path.splitext(path.basename(np_path))[0]+'.png')
inputs_2d = torch.tensor(input_data)
inputs_2d = inputs_2d.to(device).float()
num_poses = inputs_2d.size(0)
print('num_poses', num_poses)
# outputs_3d = model_pos(inputs_2d.view(num_poses, -1)).view(num_poses, -1, 3).cpu()
outputs_3d = model_pos(inputs_2d.view(num_poses, -1)).view(num_poses, -1, 3).cpu()
outputs_3d = outputs_3d[:, :, :] - outputs_3d[:, :1, :] # the output is relative to the 0 joint
print('outputs_3d', outputs_3d)
print('outputs_3d', outputs_3d.shape)
# render_animation
wrap_show3d_pose(outputs_3d.detach().numpy(), 'result/3d_'+path.splitext(path.basename(np_path))[0]+'.png')
if __name__ == '__main__':
args = get_parse_args()
# fix random
random_seed = args.random_seed
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
np.random.seed(random_seed)
random.seed(random_seed)
os.environ['PYTHONHASHSEED'] = str(random_seed)
# copy from #https://pytorch.org/docs/stable/notes/randomness.html
torch.backends.cudnn.deterministic = True
main(args)