-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathalign.py
executable file
·152 lines (126 loc) · 6.3 KB
/
align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import sys
import bz2
import requests
# landmarks detector
import dlib
# align function
import numpy as np
import PIL
import PIL.Image
LANDMARKS_MODEL_URL = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2'
class ImageAlign:
def __init__(self, save_aligned_image = False):
self.save_aligned_image = save_aligned_image
predictor_model_path = self.get_predictor_model_path()
self.detector = dlib.get_frontal_face_detector() # cnn_face_detection_model_v1 also can be used
self.shape_predictor = dlib.shape_predictor(predictor_model_path)
def __call__(self, img, result_file_path=None):
'''
params
img (str) - path to image to align
returns
PIL.Image object - aligned as ffhq dataset
'''
return self.align(img, result_file_path=None)
def get_predictor_model_path(self):
src_path = 'shape_predictor_68_face_landmarks.dat.bz2'
dst_path = src_path[:-4]
if not os.path.exists(src_path):
f = requests.get(LANDMARKS_MODEL_URL, allow_redirects=True)
open(src_path, 'wb').write(f.content)
if not os.path.exists(dst_path):
data = bz2.BZ2File(src_path).read()
with open(dst_path, 'wb') as fp:
fp.write(data)
return dst_path
def get_landmarks(self, image):
img = dlib.load_rgb_image(image)
dets = self.detector(img, 1)
for detection in dets:
face_landmarks = [(item.x, item.y) for item in self.shape_predictor(img, detection).parts()]
return face_landmarks
return None
def align_function(self, src_file, face_landmarks, output_size=256, transform_size=4096, enable_padding=True):
# Align function from FFHQ dataset pre-processing step
# https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
lm = np.array(face_landmarks)
lm_chin = lm[0 : 17] # left-right
lm_eyebrow_left = lm[17 : 22] # left-right
lm_eyebrow_right = lm[22 : 27] # left-right
lm_nose = lm[27 : 31] # top-down
lm_nostrils = lm[31 : 36] # top-down
lm_eye_left = lm[36 : 42] # left-clockwise
lm_eye_right = lm[42 : 48] # left-clockwise
lm_mouth_outer = lm[48 : 60] # left-clockwise
lm_mouth_inner = lm[60 : 68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
y = np.flipud(x) * [-1, 1]
c = eye_avg + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
# Load in-the-wild image.
if not os.path.isfile(src_file):
print('\nCannot find source image. Please run "--wilds" before "--align".')
return
img = PIL.Image.open(src_file).convert('RGB')
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'mean')
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
# Save aligned image.
return img
def align(self, img, result_file_path=None):
if not img.endswith('.jpg') and not img.endswith('.png'):
print('Image name should end with ".jpg" or ".png"')
return None
if not os.path.exists(img):
print('Image does not exist')
return None
landmark = self.get_landmarks(img)
if landmark is None:
print('Face is not detected')
return None
img = self.align_function(img, landmark)
if self.save_aligned_image:
img.save(result_file_path if result_file_path is not None else 'result.png', 'PNG')
return img
if __name__ == "__main__":
print("Testing aligner")
RAW_IMAGE_DIR = sys.argv[1]
aligner = ImageAlign(save_aligned_image = True)
aligner(RAW_IMAGE_DIR)