-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
673 lines (545 loc) · 31.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
import torch
import random
import torch.nn as nn
import numpy as np
import math
from timm.models.vision_transformer import Attention, Mlp #,PatchEmbed
from timm.models.layers import DropPath, to_2tuple
from functools import partial
from torch import Tensor
from typing import Optional
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from torch import nn, Tensor
from block.mamba_block import modulate, Spiral_MambaBlock, Zig_MambaBlock, \
ViM_MambaBlock, VMamba_MambaBlock, EfficientVMamba_MambaBlock, DiTBlock
# from block.unet2 import UNet as U_Net
from tools import spiral, zig, vmamba_
#################################################################################
# Embedding Layers for Timesteps and Patch #
#################################################################################
class PatchEmbed(nn.Module):
""" 2D Image to Patch Embedding
PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
"""
def __init__(self, img_size=28, patch_size=2, stride=2, in_chans=4, embed_dim=512, norm_layer=None, flatten=True):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = ((img_size[0] - patch_size[0]) // stride + 1, (img_size[1] - patch_size[1]) // stride + 1)
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.flatten = flatten
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
B, C, H, W = x.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
x = self.norm(x)
return x
class TimestepEmbed(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
#################################################################################
# Core DiffMa Model #
#################################################################################
class FinalLayer(nn.Module):
"""
The final layer of DiM.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size * 2, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DiffMa(nn.Module):
"""
Diffusion model with a Mamba backbone.
"""
def __init__(
self,
input_size=28,
patch_size=2,
strip_size = 2,
in_channels=4,
hidden_size=512,
depth=16,
learn_sigma=True,
block_type='spiral',
dt_rank=16,
d_state=16,
use_mamba2=False,
):
super().__init__()
self.learn_sigma = learn_sigma
self.depth = depth
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.patch_size = patch_size
self.input_size = input_size
self.block_type = block_type
self.x_embedder = PatchEmbed(input_size, patch_size, strip_size, in_channels, hidden_size)
self.t_embedder = TimestepEmbed(hidden_size)
num_patches = self.x_embedder.num_patches
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False)
if self.block_type == 'spiral':
matrix_list, original_order_indexes_list = spiral(int(self.input_size/self.patch_size))
self.blocks = nn.ModuleList([
Spiral_MambaBlock(token_list=matrix_list[(2*i)%len(matrix_list)],
token_list_reversal=matrix_list[(2*i)%len(matrix_list)+1],
origina_list=original_order_indexes_list[(2*i)%len(matrix_list)],
origina_list_reversal=original_order_indexes_list[(2*i)%len(matrix_list)+1],
D_dim=hidden_size,
E_dim=hidden_size*2,
dim_inner=hidden_size*2,
dt_rank=dt_rank,
d_state=d_state,
use_mamba2=use_mamba2,)
for i in range(depth)
])
elif self.block_type == 'zig':
self.blocks = nn.ModuleList([
Zig_MambaBlock(token_list=zig(int(self.input_size/self.patch_size), i)[0],
origina_list=zig(int(self.input_size/self.patch_size), i)[1],
D_dim=hidden_size,
E_dim=hidden_size*2,
dim_inner=hidden_size*2,
dt_rank=dt_rank,
d_state=d_state,
use_mamba2=use_mamba2,)
for i in range(depth)
])
elif self.block_type == 'vim':
self.blocks = nn.ModuleList([
ViM_MambaBlock(D_dim=hidden_size,
E_dim=hidden_size*2,
dim_inner=hidden_size*2,
dt_rank=dt_rank,
d_state=d_state,
use_mamba2=use_mamba2,)
for i in range(depth)
])
elif self.block_type == 'vmamba':
order_list, original_list = vmamba_(int(self.input_size/self.patch_size))
self.blocks = nn.ModuleList([
VMamba_MambaBlock(token_list=order_list,
origina_list=original_list,
D_dim=hidden_size,
E_dim=hidden_size*2,
dim_inner=hidden_size*2,
dt_rank=dt_rank,
d_state=d_state,
use_mamba2=use_mamba2,)
for i in range(depth)
])
elif self.block_type == 'efficientVMamba':
self.blocks = nn.ModuleList([
EfficientVMamba_MambaBlock(D_dim=hidden_size,
E_dim=hidden_size*2,
dim_inner=hidden_size*2,
dt_rank=dt_rank,
d_state=d_state,
use_mamba2=use_mamba2,)
for i in range(depth)
])
elif self.block_type == 'DiT':
self.blocks = nn.ModuleList([
DiTBlock(
hidden_size=hidden_size,
num_heads=8,
)
for i in range(depth)
])
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
self.initialize_weights()
def initialize_weights(self):
# Initialize mamba layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize (and freeze) pos_embed by sin-cos embedding:
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in mamba blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def unpatchify(self, x):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
h = w = int(x.shape[1] ** 0.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p))
return imgs
def forward(self, x, t, y, y2, w):
"""
Forward pass of DiM.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, D) tensor of CT, output by BiomedCLIP's image encoder
y2: (N, T, D) tensor of CT, output by our pre-train CTencoder
w: (N, T, 1) tensor of weight, output by our pre-train CTencoder
"""
x = self.x_embedder(x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(t) # (N, D)
# y # (N, D)
y2 = torch.mean(y2, dim=1) # (N, D)
# w # (N, T, 1)
c1 = t + y
c2 = t + y2
c = torch.cat((c1, c2), dim=1) # (N, 2*D)
# for block in self.blocks:
# x = block(x, c, w) # (N, T, D)
block_outputs = []
for i in range(self.depth):
if i == 0:
x = self.blocks[i](x, c, w)
elif i > self.depth/2:
skip_connection = block_outputs[self.depth-i-1]
x = self.blocks[i](block_outputs[-1] + skip_connection, c, w)
else:
x = self.blocks[i](block_outputs[-1], c, w)
block_outputs.append(x)
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
def forward_with_cfg(self, x, t, y, y2, w, cfg_scale):
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.forward(combined, t, y, y2, w)
# For exact reproducibility reasons, we apply classifier-free guidance on only
# three channels by default. The standard approach to cfg applies it to all channels.
# This can be done by uncommenting the following line and commenting-out the line following that.
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
#################################################################################
# Sine/Cosine Positional Embedding Functions #
#################################################################################
# from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.
omega = 1. / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
#################################################################################
# DiM Configs #
#################################################################################
def DiffMa_XXL_2(**kwargs):
return DiffMa(depth=56, hidden_size=512, patch_size=2, strip_size=2, block_type='spiral', **kwargs)
def DiffMa_XXL_4(**kwargs):
return DiffMa(depth=56, hidden_size=512, patch_size=4, strip_size=4, block_type='spiral', **kwargs)
def DiffMa_XXL_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=56, hidden_size=512, patch_size=7, strip_size=7, block_type='spiral', **kwargs)
def DiffMa_XL_2(**kwargs):
return DiffMa(depth=28, hidden_size=512, patch_size=2, strip_size=2, block_type='spiral', **kwargs)
def DiffMa_XL_4(**kwargs):
return DiffMa(depth=28, hidden_size=512, patch_size=4, strip_size=4, block_type='spiral', **kwargs)
def DiffMa_XL_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=28, hidden_size=512, patch_size=7, strip_size=7, block_type='spiral', **kwargs)
def DiffMa_L_2(**kwargs):
return DiffMa(depth=16, hidden_size=512, patch_size=2, strip_size=2, block_type='spiral', **kwargs)
def DiffMa_L_4(**kwargs):
return DiffMa(depth=16, hidden_size=512, patch_size=4, strip_size=4, block_type='spiral', **kwargs)
def DiffMa_L_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=16, hidden_size=512, patch_size=7, strip_size=7, block_type='spiral', **kwargs)
def DiffMa_B_2(**kwargs):
return DiffMa(depth=8, hidden_size=512, patch_size=2, strip_size=2, block_type='spiral', **kwargs)
def DiffMa_B_4(**kwargs):
return DiffMa(depth=8, hidden_size=512, patch_size=4, strip_size=4, block_type='spiral', **kwargs)
def DiffMa_B_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=8, hidden_size=512, patch_size=7, strip_size=7, block_type='spiral', **kwargs)
def DiffMa_S_2(**kwargs):
return DiffMa(depth=4, hidden_size=512, patch_size=2, strip_size=2, block_type='spiral', **kwargs)
def DiffMa_S_4(**kwargs):
return DiffMa(depth=4, hidden_size=512, patch_size=4, strip_size=4, block_type='spiral', **kwargs)
def DiffMa_S_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=4, hidden_size=512, patch_size=7, strip_size=7, block_type='spiral', **kwargs)
#---------------------------------------------------------------------------------------------------
# code reproduction of zigma block,
# from paper 'ZigMa: Zigzag Mamba Diffusion Model'.
def ZigMa_XL_2(**kwargs):
return DiffMa(depth=28, hidden_size=512, patch_size=2, strip_size=2, block_type='zig', **kwargs)
def ZigMa_XL_4(**kwargs):
return DiffMa(depth=28, hidden_size=512, patch_size=4, strip_size=4, block_type='zig', **kwargs)
def ZigMa_XL_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=28, hidden_size=512, patch_size=7, strip_size=7, block_type='zig', **kwargs)
def ZigMa_L_2(**kwargs):
return DiffMa(depth=16, hidden_size=512, patch_size=2, strip_size=2, block_type='zig', **kwargs)
def ZigMa_L_4(**kwargs):
return DiffMa(depth=16, hidden_size=512, patch_size=4, strip_size=4, block_type='zig', **kwargs)
def ZigMa_L_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=16, hidden_size=512, patch_size=7, strip_size=7, block_type='zig', **kwargs)
def ZigMa_B_2(**kwargs):
return DiffMa(depth=8, hidden_size=512, patch_size=2, strip_size=2, block_type='zig', **kwargs)
def ZigMa_B_4(**kwargs):
return DiffMa(depth=8, hidden_size=512, patch_size=4, strip_size=4, block_type='zig', **kwargs)
def ZigMa_B_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=8, hidden_size=512, patch_size=7, strip_size=7, block_type='zig', **kwargs)
def ZigMa_S_2(**kwargs):
return DiffMa(depth=4, hidden_size=512, patch_size=2, strip_size=2, block_type='zig', **kwargs)
def ZigMa_S_4(**kwargs):
return DiffMa(depth=4, hidden_size=512, patch_size=4, strip_size=4, block_type='zig', **kwargs)
def ZigMa_S_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=4, hidden_size=512, patch_size=7, strip_size=7, block_type='zig', **kwargs)
def ZigMa_BL_2(**kwargs):
return DiffMa(depth=13, hidden_size=512, patch_size=2, strip_size=2, block_type='zig', **kwargs)
#---------------------------------------------------------------------------------------------------
# code reproduction of Vision Mamba block,
# from paper 'Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model'.
def ViM_XL_2(**kwargs):
return DiffMa(depth=28, hidden_size=512, patch_size=2, strip_size=2, block_type='vim', **kwargs)
def ViM_XL_4(**kwargs):
return DiffMa(depth=28, hidden_size=512, patch_size=4, strip_size=4, block_type='vim', **kwargs)
def ViM_XL_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=28, hidden_size=512, patch_size=7, strip_size=7, block_type='vim', **kwargs)
def ViM_L_2(**kwargs):
return DiffMa(depth=16, hidden_size=512, patch_size=2, strip_size=2, block_type='vim', **kwargs)
def ViM_L_4(**kwargs):
return DiffMa(depth=16, hidden_size=512, patch_size=4, strip_size=4, block_type='vim', **kwargs)
def ViM_L_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=16, hidden_size=512, patch_size=7, strip_size=7, block_type='vim', **kwargs)
def ViM_B_2(**kwargs):
return DiffMa(depth=8, hidden_size=512, patch_size=2, strip_size=2, block_type='vim', **kwargs)
def ViM_B_4(**kwargs):
return DiffMa(depth=8, hidden_size=512, patch_size=4, strip_size=4, block_type='vim', **kwargs)
def ViM_B_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=8, hidden_size=512, patch_size=7, strip_size=7, block_type='vim', **kwargs)
def ViM_S_2(**kwargs):
return DiffMa(depth=4, hidden_size=512, patch_size=2, strip_size=2, block_type='vim', **kwargs)
def ViM_S_4(**kwargs):
return DiffMa(depth=4, hidden_size=512, patch_size=4, strip_size=4, block_type='vim', **kwargs)
def ViM_S_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=4, hidden_size=512, patch_size=7, strip_size=7, block_type='vim', **kwargs)
def ViM_BL_2(**kwargs):
return DiffMa(depth=13, hidden_size=512, patch_size=2, strip_size=2, block_type='vim', **kwargs)
#---------------------------------------------------------------------------------------------------
# code reproduction of VMamba block,
# from paper 'VMamba: Visual State Space Model'.
def VMamba_XL_2(**kwargs):
return DiffMa(depth=28, hidden_size=512, patch_size=2, strip_size=2, block_type='vmamba', **kwargs)
def VMamba_XL_4(**kwargs):
return DiffMa(depth=28, hidden_size=512, patch_size=4, strip_size=4, block_type='vmamba', **kwargs)
def VMamba_XL_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=28, hidden_size=512, patch_size=7, strip_size=7, block_type='vmamba', **kwargs)
def VMamba_L_2(**kwargs):
return DiffMa(depth=16, hidden_size=512, patch_size=2, strip_size=2, block_type='vmamba', **kwargs)
def VMamba_L_4(**kwargs):
return DiffMa(depth=16, hidden_size=512, patch_size=4, strip_size=4, block_type='vmamba', **kwargs)
def VMamba_L_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=16, hidden_size=512, patch_size=7, strip_size=7, block_type='vmamba', **kwargs)
def VMamba_B_2(**kwargs):
return DiffMa(depth=8, hidden_size=512, patch_size=2, strip_size=2, block_type='vmamba', **kwargs)
def VMamba_B_4(**kwargs):
return DiffMa(depth=8, hidden_size=512, patch_size=4, strip_size=4, block_type='vmamba', **kwargs)
def VMamba_B_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=8, hidden_size=512, patch_size=7, strip_size=7, block_type='vmamba', **kwargs)
def VMamba_S_2(**kwargs):
return DiffMa(depth=4, hidden_size=512, patch_size=2, strip_size=2, block_type='vmamba', **kwargs)
def VMamba_S_4(**kwargs):
return DiffMa(depth=4, hidden_size=512, patch_size=4, strip_size=4, block_type='vmamba', **kwargs)
def VMamba_S_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=4, hidden_size=512, patch_size=7, strip_size=7, block_type='vmamba', **kwargs)
def VMamba_BL_2(**kwargs):
return DiffMa(depth=13, hidden_size=512, patch_size=2, strip_size=2, block_type='vmamba', **kwargs)
#---------------------------------------------------------------------------------------------------
# code reproduction of EfficientVMamba,
# from paper 'EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba'.
def EMamba_XL_2(**kwargs):
return DiffMa(depth=28, hidden_size=512, patch_size=2, strip_size=2, block_type='efficientVMamba', **kwargs)
def EMamba_XL_4(**kwargs):
return DiffMa(depth=28, hidden_size=512, patch_size=4, strip_size=4, block_type='efficientVMamba', **kwargs)
def EMamba_XL_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=28, hidden_size=512, patch_size=7, strip_size=7, block_type='efficientVMamba', **kwargs)
def EMamba_L_2(**kwargs):
return DiffMa(depth=16, hidden_size=512, patch_size=2, strip_size=2, block_type='efficientVMamba', **kwargs)
def EMamba_L_4(**kwargs):
return DiffMa(depth=16, hidden_size=512, patch_size=4, strip_size=4, block_type='efficientVMamba', **kwargs)
def EMamba_L_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=16, hidden_size=512, patch_size=7, strip_size=7, block_type='efficientVMamba', **kwargs)
def EMamba_B_2(**kwargs):
return DiffMa(depth=8, hidden_size=512, patch_size=2, strip_size=2, block_type='efficientVMamba', **kwargs)
def EMamba_B_4(**kwargs):
return DiffMa(depth=8, hidden_size=512, patch_size=4, strip_size=4, block_type='efficientVMamba', **kwargs)
def EMamba_B_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=8, hidden_size=512, patch_size=7, strip_size=7, block_type='efficientVMamba', **kwargs)
def EMamba_S_2(**kwargs):
return DiffMa(depth=4, hidden_size=512, patch_size=2, strip_size=2, block_type='efficientVMamba', **kwargs)
def EMamba_S_4(**kwargs):
return DiffMa(depth=4, hidden_size=512, patch_size=4, strip_size=4, block_type='efficientVMamba', **kwargs)
def EMamba_S_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=4, hidden_size=512, patch_size=7, strip_size=7, block_type='efficientVMamba', **kwargs)
def EMamba_BL_2(**kwargs):
return DiffMa(depth=13, hidden_size=512, patch_size=2, strip_size=2, block_type='efficientVMamba', **kwargs)
#---------------------------------------------------------------------------------------------------
# code reproduction of DiT,
# from paper 'Scalable Diffusion Models with Transformers'.
def DiT_XL_2(**kwargs):
return DiffMa(depth=28, hidden_size=512, patch_size=2, strip_size=2, block_type='DiT', **kwargs)
def DiT_XL_4(**kwargs):
return DiffMa(depth=28, hidden_size=512, patch_size=4, strip_size=4, block_type='DiT', **kwargs)
def DiT_XL_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=28, hidden_size=512, patch_size=7, strip_size=7, block_type='DiT', **kwargs)
def DiT_L_2(**kwargs):
return DiffMa(depth=16, hidden_size=512, patch_size=2, strip_size=2, block_type='DiT', **kwargs)
def DiT_L_4(**kwargs):
return DiffMa(depth=16, hidden_size=512, patch_size=4, strip_size=4, block_type='DiT', **kwargs)
def DiT_L_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=16, hidden_size=512, patch_size=7, strip_size=7, block_type='DiT', **kwargs)
def DiT_B_2(**kwargs):
return DiffMa(depth=8, hidden_size=512, patch_size=2, strip_size=2, block_type='DiT', **kwargs)
def DiT_B_4(**kwargs):
return DiffMa(depth=8, hidden_size=512, patch_size=4, strip_size=4, block_type='DiT', **kwargs)
def DiT_B_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=8, hidden_size=512, patch_size=7, strip_size=7, block_type='DiT', **kwargs)
def DiT_S_2(**kwargs):
return DiffMa(depth=4, hidden_size=512, patch_size=2, strip_size=2, block_type='DiT', **kwargs)
def DiT_S_4(**kwargs):
return DiffMa(depth=4, hidden_size=512, patch_size=4, strip_size=4, block_type='DiT', **kwargs)
def DiT_S_7(**kwargs): # Important! If the input image dimension is not 224*224, change 7 to 8
return DiffMa(depth=4, hidden_size=512, patch_size=7, strip_size=7, block_type='DiT', **kwargs)
def DiT_SB_2(**kwargs):
return DiffMa(depth=7, hidden_size=512, patch_size=2, strip_size=2, block_type='DiT', **kwargs)
# def UNet_2(**kwargs):
# return U_Net(n_channels=4, out_channels=8, bilinear=True)
DiffMa_models = {
#---------------------------------------Ours------------------------------------------#
'DiffMa-XXL/2': DiffMa_XXL_2, 'DiffMa-XXL/4': DiffMa_XXL_4, 'DiffMa-XXL/7': DiffMa_XXL_7,
'DiffMa-XL/2': DiffMa_XL_2, 'DiffMa-XL/4': DiffMa_XL_4, 'DiffMa-XL/7': DiffMa_XL_7,
'DiffMa-L/2' : DiffMa_L_2, 'DiffMa-L/4' : DiffMa_L_4, 'DiffMa-L/7' : DiffMa_L_7,
'DiffMa-B/2' : DiffMa_B_2, 'DiffMa-B/4' : DiffMa_B_4, 'DiffMa-B/7' : DiffMa_B_7,
'DiffMa-S/2' : DiffMa_S_2, 'DiffMa-S/4' : DiffMa_S_4, 'DiffMa-S/7' : DiffMa_S_7,
#-----------------------------code reproduction of zigma------------------------------#
'ZigMa-XL/2': ZigMa_XL_2, 'ZigMa-XL/4': ZigMa_XL_4, 'ZigMa-XL/7': ZigMa_XL_7,
'ZigMa-L/2' : ZigMa_L_2, 'ZigMa-L/4' : ZigMa_L_4, 'ZigMa-L/7' : ZigMa_L_7,
'ZigMa-B/2' : ZigMa_B_2, 'ZigMa-B/4' : ZigMa_B_4, 'ZigMa-B/7' : ZigMa_B_7,
'ZigMa-S/2' : ZigMa_S_2, 'ZigMa-S/4' : ZigMa_S_4, 'ZigMa-S/7' : ZigMa_S_7,
'ZigMa-BL/2' : ZigMa_BL_2,
#--------------------------code reproduction of Vision Mamba--------------------------#
'ViM-XL/2': ViM_XL_2, 'ViM-XL/4': ViM_XL_4, 'ViM-XL/7': ViM_XL_7,
'ViM-L/2' : ViM_L_2, 'ViM-L/4' : ViM_L_4, 'ViM-L/7' : ViM_L_7,
'ViM-B/2' : ViM_B_2, 'ViM-B/4' : ViM_B_4, 'ViM-B/7' : ViM_B_7,
'ViM-S/2' : ViM_S_2, 'ViM-S/4' : ViM_S_4, 'ViM-S/7' : ViM_S_7,
'ViM-BL/2' : ViM_BL_2,
#---------------------------code reproduction of VMamba-------------------------------#
'VMamba-XL/2': VMamba_XL_2, 'VMamba-XL/4': VMamba_XL_4, 'VMamba-XL/7': VMamba_XL_7,
'VMamba-L/2' : VMamba_L_2, 'VMamba-L/4' : VMamba_L_4, 'VMamba-L/7' : VMamba_L_7,
'VMamba-B/2' : VMamba_B_2, 'VMamba-B/4' : VMamba_B_4, 'VMamba-B/7' : VMamba_B_7,
'VMamba-S/2' : VMamba_S_2, 'VMamba-S/4' : VMamba_S_4, 'VMamba-S/7' : VMamba_S_7,
'VMamba-BL/2' : VMamba_BL_2,
#----------------------code reproduction of EfficientVMamba---------------------------#
'EMamba-XL/2': EMamba_XL_2, 'EMamba-XL/4': EMamba_XL_4, 'EMamba-XL/7': EMamba_XL_7,
'EMamba-L/2' : EMamba_L_2, 'EMamba-L/4' : EMamba_L_4, 'EMamba-L/7' : EMamba_L_7,
'EMamba-B/2' : EMamba_B_2, 'EMamba-B/4' : EMamba_B_4, 'EMamba-B/7' : EMamba_B_7,
'EMamba-S/2' : EMamba_S_2, 'EMamba-S/4' : EMamba_S_4, 'EMamba-S/7' : EMamba_S_7,
'EMamba-BL/2' : EMamba_BL_2,
#----------------------code reproduction of DiT---------------------------#
'DiT-XL/2': DiT_XL_2, 'DiT-XL/4': DiT_XL_4, 'DiT-XL/7': DiT_XL_7,
'DiT-L/2' : DiT_L_2, 'DiT-L/4' : DiT_L_4, 'DiT-L/7' : DiT_L_7,
'DiT-B/2' : DiT_B_2, 'DiT-B/4' : DiT_B_4, 'DiT-B/7' : DiT_B_7,
'DiT-S/2' : DiT_S_2, 'DiT-S/4' : DiT_S_4, 'DiT-S/7' : DiT_S_7,
'DiT-SB/2' : DiT_SB_2,
#----------------------code reproduction of U-Net diffusion---------------------------#
# 'UNet-2': UNet_2,
}