-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath2101-hw7-rjw.tex
480 lines (454 loc) · 23.4 KB
/
math2101-hw7-rjw.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
\documentclass{letter}
\usepackage{enumitem}
\usepackage{mathtools}
\usepackage{fancyhdr}
\usepackage{xcolor}
\usepackage{mdframed}
\usepackage{bm}
\usepackage[letterpaper,portrait,left=2cm,right=2cm,top=3.5cm,bottom=2cm]{geometry}
\pagestyle{fancy}
\fancyhf{}
\rhead{Robert Wagner\\July 2, 2016}
\lhead{Math 2101\\Assignment 7}
\newcounter{question}
\setcounter{question}{0}
\usepackage{amsmath,amsthm}
\usepackage{amssymb}
\usepackage{tikz}
\usetikzlibrary{arrows}
% magnitude bars
\newcommand{\norm}[1]{\lvert #1 \rvert}
% explicit vector
\newcommand{\Ve}[1]{\langle #1 \rangle}
% named vector
\newcommand{\Vn}[1]{\vec{#1}}
% a line with an arrow above
\newcommand{\Line}[1]{\overrightarrow{#1}}
% equals with question mark above
\newcommand{\?}{\stackrel{?}{=}}
% formatting for questions
\newcommand\Que[1]{%
\leavevmode\noindent
#1
}
% formatting for answers
\newcommand\Ans[2][]{%
\leavevmode\noindent
{
\begin{mdframed}[backgroundcolor=blue!10]
#2
\end{mdframed}
}
}
% this is like align but squashed
\newenvironment{salign}
{\par$\!\aligned}
{\endaligned$\par}
% a matrix, parameter is column count
\newenvironment{Mat}[1]{%
\left[\begin{array}{*{#1}{r}}
}{%
\end{array}\right]
}
% a matrix, parameter is column count centered
\newenvironment{Cmat}[1]{%
\left[\begin{array}{*{#1}{c}}
}{%
\end{array}\right]
}
% an augmented matrix, with one augmented column
\newenvironment{Amat}[1]{%
\left[\begin{array}{@{}*{#1}{r}|r@{}}
}{%
\end{array}\right]
}
% an augmented matrix with n columns and n augmented columns
\newenvironment{Amat2}[1]{%
\left[\begin{array}{@{~}*{#1}{r}| @{~~}*{#1}{r}}
}{%
\end{array}\right]
}
% an augmented matrix with n columns and m augmented columns
\newenvironment{Amat3}[2]{%
\left[\begin{array}{@{~}*{#1}{r}| @{~~}*{#2}{r}}
}{%
\end{array}\right]
}
\begin{document}
\begin{enumerate}
\item Find the determinant of each matrix.
\begin{enumerate}
\item $\begin{Mat}{2} 2 & 3 \\ 1 & -1 \end{Mat}$
\Ans{
$(2\cdot -1)-(3\cdot 1) = -2 - 3 = \underline{-5}$
}
\item $\begin{Mat}{2} 2 & -3 \\ 4 & -6 \end{Mat}$
\Ans{
$(2\cdot -6)-(-3\cdot 4) = -12+12 = \underline{0}$
}
\item $\begin{Mat}{3} 3 & -1 & 1 \\
1 & 0 & -1 \\
2 & 1 & 1 \end{Mat}$
\Ans{
$(1)(-1-1)(-1)^3 + 0 + (-1)(3--2)(-1)^5 = 2 + 5 = \underline{7}$
}
\end{enumerate}
~\\
\item
Every mathematical formula is a summary of all the steps of an algorithm. Cramer's Rule is a formula that summarizes all steps necessary to solve a system of $n$\ equations with $n$\ unknowns.
\begin{enumerate}[label=(\alph*)]
\item \Que{
Consider a system of two equations with two unknowns:
\begin{align*}
a_{11}x+a_{12}y &= c_1 \\
a_{21}x+a_{22}y &= c_2
\end{align*}
Solve this system to produce formulas for the values $x$\ and $y$.
}
\Ans{
\begin{align*}
\begin{Amat}{2} a_{11} & a_{12} & c_1 \\
a_{21} & a_{22} & c_2 \end{Amat}
&\to
\begin{Amat}{2} a_{11} & a_{12} & c_1 \\
0 & \frac{a_{11}a_{22}-a_{12}a_{21}}{a_{11}} & c_2 - \frac{c_1a_{21}}{a_{11}} \end{Amat} \\
&\to
\begin{Amat}{2} a_{11} & 0 & c_1-\left(\frac{a_{11}a_{12}}{a_{11}a_{22}-a_{12}a_{21}}\right)\left(\frac{c_2a_{11}-c_1a_{21}}{a_{11}}\right) \\
0 & \frac{a_{11}a_{22}-a_{12}a_{21}}{a_{11}} &\frac{c_2a_{11}-c_1a_{21}}{a_{11}} \end{Amat} \\
&\to
\begin{Amat}{2} a_{11} & 0 & \frac{c_1a_{11}a_{22}-c_1a_{12}a_{21}}{a_{11}a_{22}-a_{12}a_{21}} - \frac{c_2a_{11}a_{12}-c_1a_{12}a_{21}}{a_{11}a_{22}-a_{12}a_{21}} \\
0 & 1 & \left(\frac{c_2a_{11}-c_1a_{21}}{a_{11}}\right)\left(\frac{a_{11}}{a_{11}a_{22}-a_{12}a_{21}}\right) \end{Amat} \\
&\to
\begin{Amat}{2} 1 & 0 & \frac{c_1a_{22}-c_2a_{12}}{a_{11}a_{22}-a_{12}a_{21}} \\
0 & 1 & \frac{c_2a_{11}-c_1a_{21}}{a_{11}a_{22}-a_{12}a_{21}} \end{Amat} \\
x &= \frac{c_1a_{22}-c_2a_{12}}{a_{11}a_{22}-a_{12}a_{21}} \\
y &= \frac{c_2a_{11}-c_1a_{21}}{a_{11}a_{22}-a_{12}a_{21}}
\end{align*}
}
\newpage
\item \Que{
Let $A$\ be the coefficient matrix; $A_x$\ be the matrix produced by replacing first column of the coefficient matrix (corresponding to $x$) with the constant vector; $A_y$\ be the matrix produced by replacing the second column of the coefficient matrix (corresponding to $y$) with the constant vector. Find $\det A$, $\det A_x$, and $\det A_y$.
}
\Ans{
\begin{align*}
A &= \begin{Mat}{2} a_{11} & a_{12} \\ a_{21} & a_{22} \end{Mat} &\det A = a_{11}a_{22} - a_{12}a_{21} \\
A_x &= \begin{Mat}{2} c_1 & a_{12} \\ c_2 & a_{22} \end{Mat} &\det A_x = c_1a_{22} - c_2a_{12} \\
A_y &= \begin{Mat}{2}a_{11} & c_1 \\ a_{21} & c_2 \end{Mat} &\det A_y = c_2a_{11} - c_1a_{21}
\end{align*}
}
\item \Que{
Express the values of $x$\ and $y$\ in terms of these determinants.
}
\Ans{
\begin{align*}
&x = \frac{\det A_x}{\det A}
&y = \frac{\det A_y}{\det A}
\end{align*}
}
\item \Que{
Use Cramer's Rule to solve:
\begin{align*}
3x+4y &= 9 \\
7x-27 &= 8
\end{align*}
}
\Ans{
\begin{align*}
x &= \frac{(9\cdot -27)-(4\cdot 8)}{(3\cdot 8)-(4\cdot 7)} = \frac{-243-32}{-4} &= 68\frac{3}{4}\\
y &= \frac{(3 \cdot 8)-(9 \cdot 7)}{(3\cdot 8)-(4\cdot 7)} = \frac{32-63}{-4} &= 7\frac{3}{4}
\end{align*}
}
\item \Que{
Cramer's Rule generalizes (with $A_z$\ defined as you'd expect it to be). Use it to solve:
\begin{align*}
x+3y-4z &= 8 \\
2x-4y-7z &= 1 \\
x-2y+8 &= 0
\end{align*}
}
\Ans{
\begin{align*}
A &= \begin{Mat}{3} 1 & 3 & -4 \\
2 & -4 & -7 \\
1 & -2 & 0 \end{Mat} ~~
A_x = \begin{Mat}{3} 8 & 3 & -4 \\
1 & -4 & -7 \\
-8 & -2 & 0 \end{Mat} ~~
A_y = \begin{Mat}{3} 1 & 8 & -4 \\
2 & 1 & -7 \\
1 & -8 & 0 \end{Mat} ~~
A_z = \begin{Mat}{3} 1 & 3 & 8 \\
2 & -4 & 1 \\
1 & -2 & -8 \end{Mat} \\
\det A &= (-4)(-4--4)(-1)^{4} + (-7)(-2-3)(-1)^{5} + 0 = -35 \\
\det A_x &= (-4)(-2-32)(-1)^{4} + (-7)(-16--24)(-1)^{5} + 0 = 136 + 56 = 192 \\
\det A_y &= (-4)(-16-1)(-1)^{4} + (-7)(-8-8)(-1)^{5} = 68 - 112 = -44 \\
\det A_z &= (1)(32--2)(-1)^2 + (2)(-24--16)(-1)^3 + (1)(3--32)(-1)^4 = 34 + 16 + 35 = 85\\
x &= \frac{192}{-35} ~~~~
y = \frac{-44}{-35} ~~~~
z = \frac{85}{-35}
\end{align*}
}
\newpage
\item \Que{
Cramer's Rule is a good example of why it's the journey, not the destination: It's a terrible way to solve linear systems.
However, it's important because on the way, you find a way of determining when a system of $n$\ equations of $n$\ unknowns
does not have a unique solution. How can you use Cramer's Rule to predict whether a system of $n$\ equations of $n$\ unknowns
has a unique solution?
}
\Ans{
If $\det A \not = 0$\ where $A$\ is the coefficient matrix, then $A\mid \Vn{c}$\ has a unique solution (where $\Vn{c}$\ are non-homogeneous constants).
}
\end{enumerate}
~\\
\item
Find the eigenvalues and associated eigenvectors for the following matrices.
\begin{enumerate}[label=(\alph*)]
\item \Que{
$\begin{Mat}{2} 4 & -15 \\ 2 & -7 \end{Mat}$
}
\Ans{
\begin{align*}
\det(A-I\lambda)&= \begin{vmatrix} 4-\lambda & -15 \\ 2 & -7-\lambda \end{vmatrix}
= (4-\lambda)(-7-\lambda)-(-15)(2)
= \lambda^2 +3\lambda+2
= (\lambda+2)(\lambda+1)
= 0
\shortintertext{Thus $\lambda_1=-1$\ and $\lambda_2=-2$.}
\shortintertext{Find eigenvectors using row reduction:}
(A-\lambda_1 I)\Vn{v}_1 &= \begin{Mat}{2} 5 & -15 \\ 2 & -6 \end{Mat} \to \begin{Mat}{2} 5 & -15 \\ 0 & 0 \end{Mat}
\to \begin{Mat}{2} 1 & -3 \\ 0 & 0 \end{Mat} \to
\Vn{v}_1 = \Ve{3,1} \\
(A-\lambda_2 I)\Vn{v}_2 &= \begin{Mat}{2} 6 & -15 \\ 2 & -5 \end{Mat} \to \begin{Mat}{2} 6 & -15 \\ 0 & 0 \end{Mat}\to
\Vn{v}_2 = \Ve{15,6}
\shortintertext{Thus $\Vn{v}_1=\Ve{3,1}$\ and $\Vn{v}_2=\Ve{15,6}$.}
\shortintertext{verify:}
A\Vn{v}_1 &= \begin{Mat}{2} 4 & -15 \\ 2 & -7 \end{Mat} \begin{Mat}{1} 3 \\ 1 \end{Mat}
= \begin{Mat}{1} 12-15 \\ 6 -7 \end{Mat} = \begin{Mat}{1} -3 \\ -1 \end{Mat}
= (-1)\begin{Mat}{1} 3 \\ 1 \end{Mat} = \lambda_1\Vn{v}_1 \\
A\Vn{v}_2 &= \begin{Mat}{2} 4 & -15 \\ 2 & -7 \end{Mat} \begin{Mat}{1} 15 \\ 6 \end{Mat}
= \begin{Mat}{1} 60 - 90 \\ 30 - 42 \end{Mat} = \begin{Mat}{1} -30 \\ -12 \end{Mat}
= (-2)\begin{Mat}{1} 15 \\ 6 \end{Mat} = \lambda_2\Vn{v}_2
\end{align*}
}
\item \Que {
$\begin{Mat}{2} 18 & -20 \\ 15 & -17 \end{Mat}$
}
\Ans{
\begin{align*}
\det(A-I\lambda)&= \begin{vmatrix} 18-\lambda & -20 \\ 15 & -17-\lambda \end{vmatrix}
= (18-\lambda)(-17-\lambda) - (-20)(15)
= \lambda^2 -\lambda - 6
= (\lambda-3)(\lambda+2)
= 0
\shortintertext{Thus $\lambda_1=-2$\ and $\lambda_2=3$.}
\shortintertext{Find eigenvectors using row reduction:}
(A-\lambda_1 I)\Vn{v}_1 &= \begin{Mat}{2} 20 & -20 \\ 15 & -15 \end{Mat} \to
\begin{Mat}{2} 1 & -1 \\ 0 & 0 \end{Mat} \to
\Vn{v}_1 = \Ve{1,1} \\
(A-\lambda_2 I)\Vn{v}_2 &= \begin{Mat}{2} 15 & -20 \\ 15 & -20 \end{Mat} \to
\begin{Mat}{2} 3 & -4 \\ 0 & 0 \end{Mat}\to
\Vn{v}_2 = \Ve{4,3}
\shortintertext{Thus $\Vn{v}_1 = \Ve{1,1}$\ and $\Vn{v}_2=\Ve{4,3}$.}
\shortintertext{Verify:}
A\Vn{v}_1 &= \begin{Mat}{2} 18 & -20 \\ 15 & -17 \end{Mat}\begin{Mat}{1} 1 \\ 1 \end{Mat}
= \begin{Mat}{1} 18 - 20 \\ 15 - 17 \end{Mat} = \begin{Mat}{1} -2 \\ -2 \end{Mat}
= (-2)\begin{Mat}{1} 1 \\ 1 \end{Mat} = \lambda_1\Vn{v}_1 \\
A\Vn{v}_2 &= \begin{Mat}{2} 18 & -20 \\ 15 & -17 \end{Mat}\begin{Mat}{1} 4 \\ 3 \end{Mat}
= \begin{Mat}{1} 72 - 60 \\ 60 - 51 \end{Mat} = \begin{Mat}{1} 12 \\ 9 \end{Mat}
= (3)\begin{Mat}{1} 4 \\ 3 \end{Mat} = \lambda_2\Vn{v}_2
\end{align*}
}
\item \Que {
$\begin{Mat}{3} -2 & 5 & 4 \\ 0 & -1 & 0 \\ -2 & 7 & 4 \end{Mat}$
}
\Ans{
\begin{align*}
\det(A-\lambda I) &= (-1-\lambda)\begin{vmatrix} -2-\lambda & 4 \\ -2 & 4-\lambda \end{vmatrix}(-1)^4
= (-1-\lambda)\left[(-2-\lambda)(4-\lambda)-(4)(-2)\right] \\
&= (-1-\lambda)(\lambda^2-2\lambda) = -\lambda^2+2\lambda-\lambda^3+2\lambda^2
= -\lambda(\lambda^2-\lambda-2)\\
&= -\lambda(\lambda+1)(\lambda-2)=0
\shortintertext{Thus $\lambda_1 = -1$, $\lambda_2=0$, and $\lambda_3=2$.}
\shortintertext{Find eigenvectors using row reduction:}
(A-\lambda_1 I)\Vn{v}_1 &= \begin{Mat}{3} -1 & 5 & 4 \\ 0 & 0 & 0 \\ -2 & 7 & 5 \end{Mat}
\to \begin{Mat}{3} 1 & -5 & -4 \\ 0 & -3 & -3 \\ 0 & 0 & 0 \end{Mat}
\to \begin{Mat}{3} 3 & -15 & -12 \\ 0 & 15 & 15 \\ 0 & 0 & 0 \end{Mat}
\to \begin{Mat}{3} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{Mat}\\
\Vn{v}_1 &= \Ve{1,1,-1}\\
(A-\lambda_2 I)\Vn{v}_2 &= \begin{Mat}{3} -2 & 5 & 4 \\ 0 & -1 & 0 \\ -2 & 7 & 4 \end{Mat}
\to \begin{Mat}{3} -2 & 5 & 4 \\ 0 & -1 & 0 \\ 0 & 2 & 0 \end{Mat}
\to \begin{Mat}{3} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{Mat} \\
\Vn{v}_2 &= \Ve{2, 0, 1}\\
(A-\lambda_3 I)\Vn{v}_3 &= \begin{Mat}{3} -4 & 5 & 4 \\ 0 & -3 & 0 \\ -2 & 7 & 2 \end{Mat}
\to \begin{Mat}{3} -4 & 5 & 4 \\ 0 & -3 & 0 \\ 0 & 9 & 0 \end{Mat}
\to \begin{Mat}{3} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{Mat} \\
\Vn{v}_3 &= \Ve{1,0,1}
\shortintertext{Verify:}
A\Vn{v}_1 &= \begin{Mat}{3} -2 & 5 & 4 \\ 0 & -1 & 0 \\ -2 & 7 & 4 \end{Mat}
\begin{Mat}{1} 1 \\ 1 \\ -1 \end{Mat}
= \begin{Mat}{1} -1 \\ -1 \\ 1 \end{Mat} = (-1)\begin{Mat}{1} 1 \\ 1 \\ -1 \end{Mat}=\lambda_1\Vn{v}_1 \\
A\Vn{v}_2 &= \begin{Mat}{3} -2 & 5 & 4 \\ 0 & -1 & 0 \\ -2 & 7 & 4 \end{Mat}
\begin{Mat}{1} 2 \\ 0 \\ 1 \end{Mat}
= \begin{Mat}{1} 0 \\ 0 \\ 0 \end{Mat} = (0)\begin{Mat}{1} 2 \\ 0 \\ 1 \end{Mat} = \lambda_2\Vn{v}_2 \\
A\Vn{v}_3 &= \begin{Mat}{3} -2 & 5 & 4 \\ 0 & -1 & 0 \\ -2 & 7 & 4 \end{Mat}
\begin{Mat}{1} 1 \\ 0 \\ 1 \end{Mat}
= \begin{Mat}{1} 2 \\ 0 \\ 2 \end{Mat} = (2)\begin{Mat}{1} 1 \\ 0 \\ 1 \end{Mat} = \lambda_3\Vn{v}_3
\end{align*}
}
\end{enumerate}
%~\\
\newpage
\item
Let $x_n$\ and $y_n$\ be the number of immature and mature pairs of rabbits at the end of month $n$.
If the rabbits breed according to the model of Leonardo of Pisa, we can find $x_{n+1}$\ and $y_{n+1}$\ via
\begin{align*}
\begin{Mat}{2} 0 & 1 \\ 1 & 1 \end{Mat} \begin{Mat}{1} x_n \\ y_n \end{Mat} &= \begin{Mat}{1} x_{n+1} \\ y_{n+1} \end{Mat}
\end{align*}
\begin{enumerate}[label=(\alph*)]
\item \Que{
Find the eigenvalues and corresponding eigenvectors for the transition matrix.
}
\Ans{
\begin{align*}
\det(A-\lambda I) &= \begin{vmatrix} 0-\lambda & 1 \\ 1 & 1-\lambda \end{vmatrix}
= (-\lambda)(1-\lambda)-1
= \lambda^2-\lambda-1
= 0
\shortintertext{Use quadratic equation to find roots:}
\lambda &= \frac{-b\pm\sqrt{b^2-4ac}}{2a} = \frac{-(-1)\pm\sqrt{(-1)^2-(4)(1)(-1)}}{2(1)} = \frac{1\pm\sqrt{5}}{2} \\
\lambda_1 &= \frac{1-\sqrt{5}}{2}= 1-\phi ~~~~~~ \lambda_2 = \frac{1+\sqrt{5}}{2} = \phi
\shortintertext{Find eigenvectors using row reduction:}
(A-\lambda_1 I)\Vn{v}_1 &= \begin{Mat}{2} -\frac{1-\sqrt{5}}{2} & 1 \\ 1 & 1-\frac{1-\sqrt{5}}{2} \end{Mat} \to
\begin{Mat}{2} 0 & 1+\left(1-\frac{1-\sqrt{5}}{2}\right)\left(\frac{1-\sqrt{5}}{2}\right) \\
1 & 1-\frac{1-\sqrt{5}}{2} \end{Mat}\\
&\to \begin{Mat}{2} 1 & 1-\frac{1-\sqrt{5}}{2} \\
0 & 1+\frac{1-\sqrt{5}}{2}-\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right)^2 \end{Mat}
\to \begin{Mat}{2} 1 & 1-\frac{1-\sqrt{5}}{2} \\
0 & 1 + \frac{1}{2}-\frac{\sqrt{5}}{2} -
\left(\frac{1}{4} -\frac{\sqrt{5}}{2} + \frac{5}{4}\right) \end{Mat}\\
&\to \begin{Mat}{2} 1 & 1-\frac{1-\sqrt{5}}{2} \\ 0 & 0 \end{Mat} \to
\Vn{v}_1 = \Ve{\frac{1-\sqrt{5}}{2}-1,1} = \Ve{-\frac{1+\sqrt{5}}{2}, 1}\\
(A-\lambda_2 I)\Vn{v}_2 &= \begin{Mat}{2} -\frac{1+\sqrt{5}}{2} & 1 \\ 1 & 1-\frac{1+\sqrt{5}}{2} \end{Mat} \to
\begin{Mat}{2} 0 & 1+\left(1-\frac{1+\sqrt{5}}{2}\right)\left(\frac{1+\sqrt{5}}{2}\right) \\
1 & 1-\frac{1+\sqrt{5}}{2} \end{Mat} \\
&\to \begin{Mat}{2} 1 & 1-\frac{1+\sqrt{5}}{2} \\
0 & 1+\frac{1+\sqrt{5}}{2} - \left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right)^2 \end{Mat}
\to \begin{Mat}{2} 1 & 1-\frac{1+\sqrt{5}}{2} \\
0 & \frac{3+\sqrt{5}}{2} -
\left(\frac{1}{4} + \frac{\sqrt{5}}{2} + \frac{5}{4}\right)\end{Mat} \\
&\to \begin{Mat}{2} 1 & 1-\frac{1+\sqrt{5}}{2} \\ 0 & 0 \end{Mat} \to
\Vn{v}_2 = \Ve{\frac{1+\sqrt{5}}{2}-1,1} = \Ve{-\frac{1-\sqrt{5}}{2},1}
\shortintertext{Thus $\Vn{v}_1=\Ve{-\phi,1}$\ and $\Vn{v}_2=\Ve{\phi-1,1}$.}
\end{align*}
}
\item \Que{
Suppose $x_0=1$\ and $y_0=0$. Express $\begin{Mat}{1} 1 \\ 0 \end{Mat}$\ as a linear combination of the eigenvectors you found.
}
\Ans{
\begin{align*}
\shortintertext{Row reduce:}
&\begin{Amat}{2} -\frac{1+\sqrt{5}}{2} & -\frac{1-\sqrt{5}}{2} & 1 \\ 1 & 1 & 0 \end{Amat} \to
\begin{Amat}{2} 1 & 1 & 0 \\ 0 & \frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2} & 1 \end{Amat} \to
\begin{Amat}{2} 1 & 1 & 0 \\ 0 & \sqrt{5} & 1 \end{Amat} \to
\begin{Amat}{2} 1 & 0 & -\frac{1}{\sqrt{5}} \\ 0 & 1 & \frac{1}{\sqrt{5}} \end{Amat}
\shortintertext{Verify:}
&-\frac{1}{\sqrt{5}}\begin{Mat}{1} -\frac{1+\sqrt{5}}{2} \\ 1 \end{Mat} +
\frac{1}{\sqrt{5}}\begin{Mat}{1} -\frac{1-\sqrt{5}}{2} \\ 1 \end{Mat} =
\begin{Mat}{1} \frac{\sqrt{5}}{10} + \frac{1}{2} -\frac{\sqrt{5}}{10} +\frac{1}{2} \\
\frac{\sqrt{5}}{5}-\frac{\sqrt{5}}{5} \end{Mat}
=\begin{Mat}{1} 1 \\ 0 \end{Mat}
\end{align*}
}
\newpage
\item \Que{
Determine the exact number of immature and mature rabbits at the end of the 12th month ($x_{12}, y_{12}$).
}
\Ans{
\begin{align*}
\Vn{x}_{12} &= F^{12}\Vn{x}_0 \\
F^{12} &= (F^4)(F^4)(F^4) \\
F^2 &= \begin{Mat}{2} 0 & 1 \\ 1 & 1 \end{Mat}\begin{Mat}{2} 0 & 1 \\ 1 & 1 \end{Mat}
= \begin{Mat}{2} 1 & 1 \\ 1 & 2 \end{Mat} ~~
F^4 = \begin{Mat}{2} 1 & 1 \\ 1 & 2 \end{Mat}\begin{Mat}{2} 1 & 1 \\ 1 & 2 \end{Mat}
= \begin{Mat}{2} 2 & 3 \\ 3 & 5 \end{Mat} \\
F^8 &= \begin{Mat}{2} 2 & 3 \\ 3 & 5 \end{Mat}\begin{Mat}{2} 2 & 3 \\ 3 & 5 \end{Mat}
= \begin{Mat}{2} 13 & 21 \\ 21 & 34 \end{Mat} ~~
F^{12}=\begin{Mat}{2} 2 & 3 \\ 3 & 5 \end{Mat}\begin{Mat}{2} 13 & 21 \\ 21 & 34 \end{Mat}
=\begin{Mat}{2} 89 & 144 \\ 144 & 233 \end{Mat}\\
\Vn{x}_{12} &= \begin{Mat}{2} 89 & 144 \\ 144 & 233 \end{Mat}\begin{Mat}{1} 1 \\ 0 \end{Mat} = \begin{Mat}{1} 89 \\ 144 \end{Mat}
\end{align*}
Thus at the end of 12 months there are 89 pairs of immature and 144 pairs of mature rabbits.
}
\item \Que{
Use the eigenvalues and eigenvectors to approximate the number of immature and mature at the end of the 12th month.
}
\Ans{
Let $F=\begin{Mat}{2} 0 & 1 \\ 1 & 1 \end{Mat}, \Vn{x}=\begin{Mat}{1} 1 \\ 0 \end{Mat}$,
let $\lambda_1,\lambda_2$\ be the eigenvalues and $\Vn{v}_1, \Vn{v}_2$\ be the associated eigenvectors.
Expressing $\Vn{x}=\Ve{1,0}$\ in terms of the eigenbasis we get $\Vn{x}^\prime = \Ve{-\frac{1}{\sqrt{5}},\frac{1}{\sqrt{5}}}$.
\begin{align*}
\Vn{x}_{12}=F^{12}\Vn{x} &\approx x_1^\prime\lambda_1^{12}\Vn{v}_1 + x_2^\prime\lambda_2^{12}\Vn{v}_2
= -\frac{1}{\sqrt{5}}(1-\phi)^{12}\begin{Mat}{1}-\phi \\ 1 \end{Mat}
+ \frac{1}{\sqrt{5}}\phi^{12}\begin{Mat}{1} \phi-1 \\ 1 \end{Mat} \\
&\approx (-0.447)(0.00311)\begin{Mat}{1} -1.618 \\ 1 \end{Mat}
+ (0.447)(321.997)\begin{Mat}{1} 0.618 \\ 1 \end{Mat}
\approx \begin{Mat}{1} 89 \\ 144 \end{Mat}
\end{align*}
Thus at the end of 12 months there are approximately $89$\ pairs of immature and $144$\ pairs of mature rabbits.
}
\end{enumerate}
~\\
\item Answer the following questions.
\begin{enumerate}[label=(\alph*)]
\item \Que{
Let $A=\begin{Mat}{4} 2 & 1 & 5 & 1 \\ 0 & 2 & 3 & -1 \\ 1 & -1 & 2 & 1 \end{Mat}$.
Find a basis for Col($A$) and a basis for Null($A$).
}
\Ans{
\begin{align*}
\shortintertext{Row reduce:}
&\begin{Mat}{4} 2 & 1 & 5 & 1 \\ 0 & 2 & 3 & -1 \\ 1 & -1 & 2 & 1 \end{Mat} \to
\begin{Mat}{4} 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1 \\ 0 & -3 & -1 & 1 \end{Mat} \to
\begin{Mat}{4} 1 & 0 & 0 & 1 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 7 & -1 \end{Mat} \to
\begin{Mat}{4} 1 & 0 & 0 & 1 \\ 0 & 7 & 0 & -2 \\ 0 & 0 & 7 & -1 \end{Mat}
\shortintertext{Col($A$) = Span($\{\Ve{2,0,1},\Ve{1,2,-1},\Ve{5,3,2}\}$)}
\shortintertext{Parameterize: Let $7s=w$.}
x &= -7s\\
y &= 2s \\
z &= -s
\shortintertext{Null($A$) = Span($\Ve{-7,2,-1,7}$)}
\end{align*}
}
\newpage
\item \Que{
Mathematicians like to recycle concepts, so the same basic idea will occur in many different places.
Remember the range of a function is the set of all possible outputs;
Thus we define the range of a linear transformation $T$\ to be the set of all vectors $\Vn{y}$\ for which
$T\Vn{x}=\Vn{y}$\ for some $\Vn{x}$.
Let $T=\begin{Mat}{3} 3 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & 5 & 3 \end{Mat}$. Find the range of $T$.
}
\Ans{
Row reduce:
\begin{align*}
&\begin{Amat}{3} 3 & 1 & 1 & y_1 \\
-1 & 2 & 1 & y_2 \\
1 & 5 & 3 & y_3 \end{Amat} \to
\begin{Amat}{3} 1 & 5 & 3 & y_1+2y_2 \\
0 & 7 & 4 & y_2+y_3 \\
0 & 0 & 0 & y_3-y_1-2y_2 \end{Amat} \to
\begin{Amat}{3} 7 & 0 & 1 & 7y_1+9y_2 - 5y_3 \\
0 & 7 & 4 & y_2+y_3 \\
0 & 0 & 0 & y_3-y_1-2y_2 \end{Amat} \to
\end{align*}
Parameterize: Let $x_3=7s$. Then $x_2=-4s$, and $x_1=-s$. Thus $\Vn{x}=s\Ve{-1,-4,7}$\ for $s\in\mathbb{R}$.\\
And thus we see the range of the transformation $T$\ satisfies the equation $-y_1-2y_2-y_3=0$.\\
Let $y_1=0$, then $y_3=-2y_2$, and $\Vn{y}_1=\Ve{0,1,-2}$.\\
Let $y_2=0$, then $y_1=-y_3$, and $\Vn{y}_2 =\Ve{-1,0,1}$.\\
Let $y_3=0$, then $y_1=-2y_2$, and $\Vn{y}_3=\Ve{-2,1,0}$. \\
Since $y_3 = y_1+2y_2$\ we can see that $\{y_1,y_2\}$\ is independent but $\{y_1,y_2,y_3\}$ is not.\\
Thus the range of $T$ = Span$\{\Ve{0,1,-2},\Ve{-1,0,1}\}$\ which is a plane in $\mathbb{R}^3$.
}
\end{enumerate}
\end{enumerate}
\end{document}