-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath2101-hw5-rjw.tex
558 lines (539 loc) · 31.3 KB
/
math2101-hw5-rjw.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
\documentclass{letter}
\usepackage{enumitem}
\usepackage{mathtools}
\usepackage{fancyhdr}
\usepackage{xcolor}
\usepackage{mdframed}
\usepackage{bm}
\usepackage[letterpaper,portrait,left=2cm,right=2cm,top=3.5cm,bottom=2cm]{geometry}
\pagestyle{fancy}
\fancyhf{}
\rhead{Robert Wagner\\June 27, 2016}
\lhead{Math 2101\\Assignment 5}
\newcounter{question}
\setcounter{question}{0}
\usepackage{amsmath,amsthm}
\usepackage{amssymb}
\usepackage{tikz}
\usetikzlibrary{arrows}
% magnitude bars
\newcommand{\norm}[1]{\lvert #1 \rvert}
% explicit vector
\newcommand{\Ve}[1]{\langle #1 \rangle}
% named vector
\newcommand{\Vn}[1]{\vec{#1}}
% a line with an arrow above
\newcommand{\Line}[1]{\overrightarrow{#1}}
% equals with question mark above
\newcommand{\?}{\stackrel{?}{=}}
% formatting for questions
\newcommand\Que[1]{%
\leavevmode\noindent
#1
}
% formatting for answers
\newcommand\Ans[2][]{%
\leavevmode\noindent
{
\begin{mdframed}[backgroundcolor=blue!10]
#2
\end{mdframed}
}
}
% this is like align but squashed
\newenvironment{salign}
{\par$\!\aligned}
{\endaligned$\par}
% a matrix, parameter is column count
\newenvironment{Mat}[1]{%
\left[\begin{array}{*{#1}{r}}
}{%
\end{array}\right]
}
% a matrix, parameter is column count centered
\newenvironment{Cmat}[1]{%
\left[\begin{array}{*{#1}{c}}
}{%
\end{array}\right]
}
% an augmented matrix, with one augmented column
\newenvironment{Amat}[1]{%
\left[\begin{array}{@{}*{#1}{r}|r@{}}
}{%
\end{array}\right]
}
% an augmented matrix with n columns and n augmented columns
\newenvironment{Amat2}[1]{%
\left[\begin{array}{@{~}*{#1}{r}| @{~~}*{#1}{r}}
}{%
\end{array}\right]
}
% an augmented matrix with n columns and m augmented columns
\newenvironment{Amat3}[2]{%
\left[\begin{array}{@{~}*{#1}{r}| @{~~}*{#2}{r}}
}{%
\end{array}\right]
}
\begin{document}
\begin{enumerate}
\item For each of the following, find a basis for Row(A), Col(A), and Null(A); also identify the dimension of each. If the vectors are not independent, express the dependent vector(s) as linear combinations of the others.
\begin{enumerate}
\item $A= \begin{Mat}{3} 2 & 3 & 1 \\ 1 & 2 & 5 \\ 0 & 3 & 1 \end{Mat} $
\Ans{
First, we find rref($A$) to find bases for Col($A$) and Null($A$)
\begin{align*}
&\begin{Mat}{3} 2 & 3 & 1 \\ 1 & 2 & 5 \\ 0 & 3 & 1 \end{Mat}
\to
\begin{Mat}{3} 1 & 1 & -4 \\ 1 & 2 & 5 \\ 0 & 3 & 1 \end{Mat}
\to
\begin{Mat}{3} 1 & 1 & -4 \\ 0 & 1 & 9 \\ 0 & 3 & 1 \end{Mat}
\to
\begin{Mat}{3} 1 & 1 & -4 \\ 0 & 1 & 9 \\ 0 & 0 & -26 \end{Mat}
\to
\cdots
\to
\begin{Mat}{3} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{Mat}
\shortintertext{Since each column in rref($A$) has a pivot we can see a basis for Col($A$) is $\{\Ve{2,1,0}^T,\Ve{3,2,3}^T,\Ve{1,5,1}^T\}$\ with dimension 3, and the basis for Null($A$) is $\{\Ve{0,0,0}^T\}$\ with dimension 0. All columns are independent.}
&~\\
\shortintertext{Now we find rref($A^T$) to find a basis for Row($A$)}
&\begin{Mat}{3} 2 & 1 & 0 \\ 3 & 2 & 3 \\ 1 & 5 & 1 \end{Mat}
\to
\begin{Mat}{3} 1 & -4 & -1 \\ 0 & -13 & 0 \\ 1 & 5 & 1 \end{Mat}
\to
\begin{Mat}{3} 1 & -4 & -1 \\ 0 & 1 & 0 \\ 0 & 9 & 2 \end{Mat}
\to
\begin{Mat}{3} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{Mat}
\to
\begin{Mat}{3} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{Mat}
\shortintertext{So we can see a basis for Row($A$) is $\{\Ve{2,3,1},\Ve{1,2,5},\Ve{0,3,1}\}$\ with dimension 3.}
\end{align*}
}
\item $A= \begin{Mat}{4} 1 & 3 & 1 & 2 \\ 2 & 3 & 1 & 0 \\ 4 & -1 & -2 & 1 \end{Mat}$
\Ans{
First, we find rref($A$) to find bases for Col($A$) and Null($A$):
\begin{align*}
&\begin{Mat}{4} 1 & 3 & 1 & 2 \\ 2 & 3 & 1 & 0 \\ 4 & -1 & -2 & 1 \end{Mat}
\to
\begin{Mat}{4} 1 & 3 & 1 & 2 \\ 0 & -3 & -1 & -4 \\ 0 & -13 & -6 & -7 \end{Mat}
\to
\begin{Mat}{4} 1 & 3 & 1 & 2 \\ 0 & 39 & 13 & 52 \\ 0 & -39 & -18 & -21 \end{Mat}
\to
\begin{Mat}{4} 1 & 3 & 1 & 2 \\ 0 & 3 & 1 & 4 \\ 0 & 0 & -5 & 31 \end{Mat}
\to\\
&\begin{Mat}{4} 1 & 0 & 0 & -2 \\ 0 & 3 & 1 & 4 \\ 0 & 0 & -5 & 31 \end{Mat}
\to
\begin{Mat}{4} 1 & 0 & 0 & -2 \\ 0 & 15 & 5 & 20 \\ 0 & 0 & -5 & 31 \end{Mat}
\to
\begin{Mat}{4} 1 & 0 & 0 & -2 \\ 0 & 15 & 0 & 51 \\ 0 & 0 & -5 & 31 \end{Mat}
\to
\begin{Mat}{4} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 51/15 \\ 0 & 0 & 1 &-31/5 \end{Mat}
\shortintertext{Since columns 1, 2, 3 have pivots we can see a basis for Col($A$) is $\{\Ve{1,2,4}^T,\Ve{3,3,-1}^T,\Ve{1,1,-2}^T\}$\ with dimension 3.}
\shortintertext{and a basis for Null($A$) is $\{\Ve{30,-51,93,15}^T\}$\ with dimension 1.}
\shortintertext{column 4 is dependent on the others, and can be expressed as $-2\Ve{1,2,4}^T+\frac{51}{15}\Ve{3,3,-1}^T-\frac{31}{5}\Ve{1,1,-2}^T$}
&~\\
\shortintertext{Now, we find rref($A^T$) to find basis for Row(A):}
&\begin{Mat}{3} 1 & 2 & 4 \\ 3 & 3 & -1 \\ 1 & 1 & -2 \\ 2 & 0 & 1 \end{Mat}
\to
\begin{Mat}{3} 1 & 2 & 4 \\ 0 & -3 & -13 \\ 0 & -1 & -6 \\ 0 & -4 & -7 \end{Mat}
\to
\begin{Mat}{3} 1 & 2 & 4 \\ 0 & 1 & -6 \\ 0 & -1 & -6 \\ 0 & -4 & -7 \end{Mat}
\to
\begin{Mat}{3} 1 & 2 & 4 \\ 0 & 1 & -6 \\ 0 & 0 & -12 \\ 0 & 0 & -31 \end{Mat}
\to\cdots\to
\begin{Mat}{3} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{Mat}
\shortintertext{Since rows 1, 2, 3 have pivots, we can see a basis for Row($A$) is $\{\Ve{1,3,1,2},\Ve{2,3,1,0},\Ve{4,-1,-2,1}\}$\ with dimension 3.}
\end{align*}
}
\newpage
\item $A= \begin{Mat}{3} 3 & 1 & 4 \\1 & 5 & 9 \\ 2 & -4 & -5 \end{Mat} $
\Ans{
First, we find rref($A$) to find bases for Col($A$) and Null($A$):
\begin{align*}
&\begin{Mat}{3} 3 & 1 & 4 \\ 1 & 5 & 9 \\ 2 & -4 & -5 \end{Mat}
\to
\begin{Mat}{3} 1 & 5 & 9 \\ 1 & 5 & 9 \\ 2 & -4 & -5 \end{Mat}
\to
\begin{Mat}{3} 1 & 5 & 9 \\ 0 & -14 & -23 \\ 0 & 0 & 0 \end{Mat}
\to
\begin{Mat}{3} 1 & 5 & 9 \\ 0 & 1 & 23/14 \\ 0 & 0 & 0 \end{Mat}
\to
\begin{Mat}{3} 1 & 0 & 11/14 \\ 0 & 1 & 23/14 \\ 0 & 0 & 0 \end{Mat}
\shortintertext{Since columns 1, 2 have pivots we can see a basis for Col($A$) is $\{\Ve{3,1,2}^T,\Ve{1,5,-4}^T\}$\ with dimension 2.}
\shortintertext{and a basis for Null($A$) is $\{\Ve{-11,-23,14}^T\}$\ with dimension 1.}
\shortintertext{column 3 is dependent on the others, and can be expressed as $\frac{11}{14}\Ve{3,1,2}^T+\frac{23}{14}\Ve{1,5,-4}^T$}
\end{align*}
}
\end{enumerate}
~\\
\item
Let $\mathbb{V}=\{\Vn{v}_1,\Vn{v}_2\}$ be a basis for a 2-dimensional vector space, and let
\begin{align*}
\Vn{w}_1 &= a_{11}\Vn{v}_1 + a_{12}\Vn{v}_2 \\
\Vn{w}_2 &= a_{21}\Vn{v}_1 + a_{22}\Vn{v}_2
\end{align*}
where all $a_{ij} \in \mathbb{R}$.
\begin{enumerate}[label=(\alph*)]
\item \Que{
Under what conditions will $\mathbb{W}=\{\Vn{w}_1,\Vn{w}_2\}$\ be the basis of a 2-dimensional vector space?
}
\Ans{
$\Vn{w}_1$\ and $\Vn{w}_2$\ will be a basis if they do not point in the same direction. Since $\Vn{v}_1$\ and $\Vn{v}_2$\ form a basis, we know we can meet this condition by making sure the ratio between components of $\Vn{v}_i$\ are not the same in $\Vn{w}_i$.
\begin{align*}
\frac{a_{11}}{a_{21}} &\not = \frac{a_{12}}{a_{22}}
\shortintertext{since we do not know that $a_{21}\not = 0, a_{22}\not = 0$\ it is better to say}
a_{11}a_{22} &\not = a_{12}a_{21} \\
a_{11}a_{22}-a_{12}a_{21} &\not = 0
\end{align*}
And we see that this is analogous to the conditions for matrix invertibility in assignment 4 question 2.
Thus we can deduce that if
\[A=\begin{Mat}{2} a_{11} & a_{12} \\ a_{21} & a_{22} \end{Mat} \]
is an invertible matrix corresponding to a change of basis transformation performed on a set of basis vectors then the outcome is a set of basis vectors.
}
\newpage
\item \Que{
Prove or disprove: If $\mathbb{W}$\ is the basis for a 2-dimensional vector space, it will be the same as the vector space spanned by $\mathbb{V}$.
}
\Ans{
Suppose $\mathbb{W}$\ is a basis for a 2d vector space. Let $\Vn{x} \in Span(\mathbb{W})$\ such that $\Vn{x}=x_1\Vn{w}_1+x_2\Vn{w}_2$ for some $x_1,x_2 \in \mathbb{R}$\ not both zero.
\begin{align*}
\Vn{w}&=x_1\Vn{w}_1+x_2\Vn{w}_2\\
&=x_1(a_{11}\Vn{v}_1+a_{12}\Vn{v}_2)+x_2(a_{21}\Vn{v}_1+a_{22}\Vn{v}_2)\\
&=(x_1a_{11}+x_2a_{21})\Vn{v}_1+(x_1a_{12}+x_2a_{22})\Vn{v}_2
\end{align*}
thus $\Vn{x} \in Span(\mathbb{V})$\ and $Span(\mathbb{W})\subseteq Span(\mathbb{V})$.\\
Let $\Vn{y}\in Span(\mathbb{V})$\ such that $\Vn{y}=y_1\Vn{v}_1+y_2\Vn{v}_2$\ for some $y_1,y_2 \in \mathbb{R}$\ not both zero.
\begin{align*}
\Vn{y}&=y_1\Vn{v}_1+y_2\Vn{y}_2
\intertext{since we know $a_{11}a_{22}-a_{12}a_{21}\not = 0$\ we can substitute $y_1=x^\prime, y_2=y^\prime$\ found in part c below:}
\Vn{v}&=x^\prime\Vn{w}_1 + y^\prime\Vn{w}_2\\
&= \frac{y_1\cdot a_{22} - y_2\cdot a_{21}}{a_{11}a_{22}-a_{12}a_{21}}\Vn{w}_1 +
\frac{y_2\cdot a_{11}-y_1\cdot a_{12}}{a_{11}a_{22}-a_{12}a_{21}}\Vn{w}_2
\end{align*}
By the answer to 2(c) below. Thus $\Vn{y}\in Span(\mathbb{W}), Span(\mathbb{V})\subseteq Span(\mathbb{W})$, and subsequently\\
$Span(\mathbb{V})=Span(\mathbb{W})$.
}
~\\
%\newpage
\item \Que{
Suppose $\Vn{x}=a\Vn{v}_1+b\Vn{v}_2$. Find $a^\prime, b^\prime$\ so that $\Vn{x}=a^\prime\Vn{w}_1 + b^\prime\Vn{w}_2$.
}
\Ans{
Let $A=\begin{Mat}{2} a_{11} & a_{12} \\ a_{21} & a_{22} \end{Mat}$.
By the definition above $A\begin{Mat}{1} \Vn{v}_1 \\ \Vn{v}_2 \end{Mat} = \begin{Mat}{1} \Vn{w}_1 \\ \Vn{w}_2 \end{Mat}$. Multiply both sides by $A^{-1}$:
\begin{align*}
A^{-1}A\begin{Mat}{1} \Vn{v}_1 \\ \Vn{v}_2 \end{Mat}
&=
A^{-1}\begin{Mat}{1} \Vn{w}_1 \\ \Vn{w}_2 \end{Mat}
= \frac{1}{a_{11}a_{22}-a_{12}a_{21}}\begin{Mat}{2} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{Mat}\begin{Mat}{1} \Vn{w}_1 \\ \Vn{w}_2 \end{Mat}
\shortintertext{thus}
\Vn{x} &= \begin{Mat}{2}a & b \end{Mat} \begin{Mat}{1} \Vn{v}_1 \\ \Vn{v}_2 \end{Mat}
= \begin{Mat}{2}a & b \end{Mat} \frac{1}{a_{11}a_{22}-a_{12}a_{21}}\begin{Mat}{2} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{Mat}\begin{Mat}{1} \Vn{w}_1 \\ \Vn{w}_2 \end{Mat}\\
\begin{Mat}{2} a^\prime & b^\prime \end{Mat}
&= \frac{1}{a_{11}a_{22}-a_{12}a_{21}}\begin{Mat}{2}a & b \end{Mat} \begin{Mat}{2} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{Mat}
= \underline{\begin{Mat}{2} \frac{a\cdot a_{22} - b\cdot a_{21}}{a_{11}a_{22}-a_{12}a_{21}} & \frac{b\cdot a_{11}-a\cdot a_{12}}{a_{11}a_{22}-a_{12}a_{21}} \end{Mat}}
\end{align*}
}
\end{enumerate}
%~\\
\newpage
\item
The following will prove a useful theorem about independence, and motivate why we care about it. Suppose
$\mathbb{V} = \{\Vn{v}_1, \Vn{v}_2, \cdots,\Vn{v}_n\}$\ is a set of $n$\ vectors, none of which is the zero vector. Let $x=\sum^n_{i=1} a_i\Vn{v}_i$.
\begin{enumerate}[label=(\alph*)]
\item \Que{
Suppose $x=(a_1,a_2,\cdots,a_n)$\ and also $x=(b_1,b_2,\cdots,b_n)$,
where $a_i\not = b_i$\ for at least one $i$. Show that this means $\Vn{0}=\sum^n_{i=1}c_i\Vn{v}_i$,
where at least one $c_i$\ is non-zero.
}
\Ans{
Let $j\in \{1,2,\cdots,n\}$\ such that $a_j\not = b_j$. It follows that $b_j-a_j\not = 0$. Since $x=\sum^n_{i=1}a_i\Vn{v}_i = \sum^n_{i=1}b_i\Vn{v}_i$
\begin{align*}
x&=\begin{Mat}{4} & & & \\
\Vn{v}_1 & \Vn{v}_2 & \cdots & \Vn{v}_n \\
& & & \end{Mat}
\begin{Mat}{1} a_1 \\ a_2 \\ \vdots \\ a_n \end{Mat}
=
\begin{Mat}{4} & & & \\
\Vn{v}_1 & \Vn{v}_2 & \cdots & \Vn{v}_n \\
& & & \end{Mat}
\begin{Mat}{1} b_1 \\ b_2 \\ \vdots \\ b_n \end{Mat} \\
\Vn{0} &=
\begin{Mat}{4} & & & \\
\Vn{v}_1 & \Vn{v}_2 & \cdots & \Vn{v}_n \\
& & & \end{Mat}
\begin{Mat}{1} b_1 \\ b_2 \\ \vdots \\ b_n \end{Mat}
-\begin{Mat}{4} & & & \\
\Vn{v}_1 & \Vn{v}_2 & \cdots & \Vn{v}_n \\
& & & \end{Mat}
\begin{Mat}{1} a_1 \\ a_2 \\ \vdots \\ a_n \end{Mat} \\
\Vn{0} &= \begin{Cmat}{1} v_1^1b_1+v_1^2b_2+\cdots+v_1^jb_j+\cdots+v_1^nb_n \\
v_2^1b_1+v_2^2b_2+\cdots+v_2^jb_j+\cdots+v_2^nb_n \\
\vdots \\
v_n^1b_1+v_n^2b_2.\cdots+v_j^nb_j+\cdots+v_n^nb_n \end{Cmat}
-
\begin{Cmat}{1} v_1^1a_1+v_1^2a_2+\cdots+v_1^ja_j+\cdots+v_1^na_n \\
v_2^1a_1+v_2^2a_2+\cdots+v_2^ja_j+\cdots+v_2^na_n \\
\vdots \\
v_n^1a_1+v_n^2a_2.\cdots+v_j^na_j+\cdots+v_n^na_n \end{Cmat} \\
\Vn{0} &= \begin{Cmat}{1} (b_1-a_1)v_1^1+(b_2-a_2)v_1^2+\cdots+(b_j-a_j)v_1^j+\cdots+(b_n-a_n)v_1^n \\
(b_1-a_1)v_2^1+(b_2-a_2)v_2^2+\cdots+(b_j-a_j)v_2^j+\cdots+(b_n-a_n)v_2^n \\
\vdots \\
(b_1-a_1)v_n^1+(b_2-a_2)v_n^2+\cdots+(b_j-a_j)v_n^j+\cdots+(b_n-a_n)v_n^n \end{Cmat} \\
\Vn{0} &=\begin{Mat}{6} & & & & & \\
\Vn{v}_1 & \Vn{v}_2 & \cdots & \Vn{v}_j & \cdots & \Vn{v}_n \\
& & & & & \end{Mat}
\begin{Mat}{1} b_1-a_1 \\ b_2-a_2 \\ \vdots \\ b_j-a_j \\ \vdots \\ b_n-a_n \end{Mat}
= \sum^n_{i=1} (b_i-a_i)\Vn{v}_i
\end{align*}
Let $\Vn{c}=\Vn{b}-\Vn{a}$. Since $b_j-a_j \not = 0$\ it follows that there is at least one $c_i$\ that is non-zero.
}
%\newpage
~\\
\item \Que {
Suppose $x=(a_1,a_2,\cdots,a_n)$\ and also $x=(b_1,b_2,\cdots,b_n)$\ as above. Show that if $y=(p_1,p_2,\cdots,p_n)$, then $y=(q_1,q_2,\cdots,q_n)$\ where $p_i\not = q_i$\ for at least one $i$.
}
\Ans{
Let $j\in \{1,2,\cdots,n\}$\ such that $a_j\not = b_j$. It follows that $a_j-b_j\not = 0$. Suppose $y=(p_1,p_2,\cdots,p_n)$.
\begin{align*}
x+y&=(a_1\Vn{v}_1 + \cdots + a_j\Vn{v}_j+\cdots+a_n\Vn{v}_n) + (p_1\Vn{v}_1 + \cdots + p_j\Vn{v}_j+\cdots+p_n\Vn{v}_n)\\
x-x+y &=(a_1\Vn{v}_1 + \cdots + a_j\Vn{v}_j+\cdots+a_n\Vn{v}_n) - (b_1\Vn{v}_1 + \cdots + b_j\Vn{v}_j+\cdots+b_n\Vn{v}_n)\\
&+ (p_1\Vn{v}_1 + \cdots + p_j\Vn{v}_j+\cdots+p_n\Vn{v}_n)\\
y &= (a_1-b_1+p_1)\Vn{v}_1+\cdots+(a_j-b_j+p_j)\Vn{v}_j+\cdots+(a_n-b_n+p_n)\Vn{v}_n
\shortintertext{Let $q_i = a_i-b_i+p_1$\ for all $i\in \{1\cdots n\}$.}
y &= q_1\Vn{v}_1 + \cdots + q_j\Vn{v}_j + \cdots + q_n\Vn{v}_n
\end{align*}
Since $a_j-b_j \not = 0$\ it follows that $q_j\not = p_j$\ thus $y=(q_1,q_2,\cdots,q_n)$\ where $p_i\not = q_i$\ for at least one $i$.
}
\item \Que {
Suppose the zero vector can be expressed as a non-trivial linear combination of the vectors in $\mathbb{V}$.
Show that this means that the vectors of $\mathbb{V}$\ are not independent.
}
\Ans{
Suppose $\Vn{0}$\ is a non-trivial linear combination of vectors in $\mathbb{V}$\ with at least one $c_i\not =0$. Let $j\in\{1,2,\cdots,n\}$\ such that $c_j\not = 0$.
\begin{align*}
\Vn{0} &= c_1\Vn{v}_1+\cdots+c_j\Vn{v}_j+\cdots+c_n\Vn{v}_n\\
-c_j\Vn{v}_j &=c_1\Vn{v}_1+\cdots+c_{j-1}\Vn{v}_{j-1}+c_{j+1}\Vn{v}_{j+1}+\cdots+c_n\Vn{v}_n\\
\Vn{v}_j &=\frac{c_1}{-c_j}\Vn{v}_1 + \cdots + \frac{c_{j-1}}{-c_j}\Vn{v}_{j-1}+
\frac{c_{j+1}}{-c_j}\Vn{v}_{j+1}+\cdots+\frac{c_n}{-c_j}\Vn{v}_n
\end{align*}
Thus we have shown that $\Vn{v}_j$\ is a linear combination of the other vectors, therefore the vectors of $\mathbb{V}$\ are not independent.
}
\item \Que {
Suppose the vectors of $\mathbb{V}$\ are independent. Show this implies $\Vn{0}=\sum^n_{i=1}a_i\Vn{v}_i$ has a unique solution.
}
\Ans{
Let $\Vn{a}=\Ve{a_1,a_2,\cdots,a_n}$\ and $\Vn{b}=\Ve{b_1,b_2,\cdots,b_n}$\ such that $\sum^n_{i=1}a_i\Vn{v}_i = \sum^n_{i=1}b_i\Vn{v}_i$. Let $j \in \{1\cdots n\}$.
\begin{align*}
a_1\Vn{v}_1+\cdots+a_n\Vn{v}_n &= b_1\Vn{v}_1+b_2\Vn{v}_2+\cdots+b_n\Vn{v}_n\\
\Vn{0} &= b_1\Vn{v}_1+b_2\Vn{v}_2+\cdots+b_n\Vn{v}_n - a_1\Vn{v}_1+a_2\Vn{v}_2+\cdots+a_n\Vn{v}_n \\
&= (b_1-a_1)\Vn{v}_1 + (b_2-a_2)\Vn{v}_2 + \cdots + (b_j-a_j)\Vn{v}_j+\cdots+(b_n-a_n)\Vn{v}_n
\shortintertext{subtracting the scaled multiple of $\Vn{v}_j$\ from both sides results in}
(a_j-b_j)\Vn{v}_j &= (b_1-a_1)\Vn{v}_1 + \cdots + (b_{j-1}-a_{j-1})\Vn{v}_{j-1}+
(b_{j+1}-a_{j+1})\Vn{v}_{j+1}+\cdots+(b_n-a_n)\Vn{v}_n\\
\Vn{v}_j &= \frac{b_1-a_1}{a_j-b_j}\Vn{v}_1 + \cdots + \frac{b_{j-1}-a_{j-1}}{a_j-b_j}\Vn{v}_{j-1} +
\frac{b_{j+1}-a_{j+1}}{a_j-b_j}\Vn{v}_{j+1}+\cdots+\frac{b_n-a_n}{a_j-b_j}\Vn{v}_n
\shortintertext{since the vectors of $\mathbb{V}$\ are independent, it cannot be the case that $\Vn{v}_j$\ is a linear combination of the other vectors, therefore $a_k-b_k=0$\ and subsequently $a_k=b_k$\ must be true for all $k \in \{1\cdots n\}$. Returning to the step}
\Vn{0}&= (b_1-a_1)\Vn{v}_1 + (b_2-a_2)\Vn{v}_2 + \cdots + (b_j-a_j)\Vn{v}_j+\cdots+(b_n-a_n)\Vn{v}_n \\
&= \sum^n_{i=1}(b_i-a_i)\Vn{v}_i
= \sum^n_{i=1}0\Vn{v}_i
= 0\sum^n_{i=1}\Vn{v}_i
\end{align*}
And we have thus shown there is a singular solution $x=\Ve{0,\cdots,0}$\ for $\Vn{0}=\sum^n_{i=1}x_i\Vn{v}_i$.
}
%\newpage
\item \Que{
Show that if $\Vn{0}=\sum^n_{i=1}a_i\Vn{v}_i$\ has a unique solution, then the vectors of $\mathbb{V}$\ are independent.
}
\Ans{
Suppose that there exists $j\in\{1,\cdots,n\}$\ such that
$b_j\Vn{v}_j = b_1\Vn{v}_1 + \cdots + b_{j-1}\Vn{v}_{j-1} + b_{j+1}\Vn{v}_{j+1}+\cdots+b_n\Vn{v}_n$ for some $b_1,\cdots,b_n\in\mathbb{R}$, i.e. the vectors are not independent.
\begin{align*}
b_j\Vn{v}_j &= b_1\Vn{v}_1 + \cdots + b_{j-1}\Vn{v}_{j-1} + b_{j+1}\Vn{v}_{j+1}+\cdots+b_n\Vn{v}_n \\
\Vn{0} &= b_1\Vn{v}_1 + \cdots + (-b_j)\Vn{v}_j+\cdots+b_n\Vn{v}_n \\
(-1)\Vn{0} = \Vn{0} &= (-b_1)\Vn{v}_1 + \cdots + b_j\Vn{v}_j+\cdots+(-b_n)\Vn{v}_n
\end{align*}
Thus we have found two solutions for $\Vn{0}=\sum^n_{i=1}a_i\Vn{v}_i$:
\begin{align*}
a&=\Ve{b_1,\cdots,-b_j,\cdots,b_n}\\
a^\prime&=\Ve{-b_1,\cdots,b_j,\cdots,-b_n}
\end{align*}
Thus if the vectors are not independent then there is not a unique solution to $\Vn{0}=\sum^n_{i=1}a_i\Vn{v}_i$, and by contrapositive if there is a unique solution to $\Vn{0}=\sum^n_{i=1}a_i\Vn{v}_i$\ then the vectors are independent.
}
\end{enumerate}
%~\\
\item
A set of vectors $\mathbb{V}$\ is said to be orthogonal if any two vectors are perpendicular.
\begin{enumerate}[label=(\alph*)]
\item \Que{
Let $\mathbb{V}=\{\Vn{v}_1,\Vn{v}_2\}$, and assume these form a basis. Find a vector $\Vn{v}_{2\perp}$\ that is perpendicular to $\Vn{v}_1$.
}
\Ans{
\begin{minipage}[m]{0.6\textwidth}
\begin{salign}
\Vn{v}_{2\perp} &= \Vn{v}_2 - proj_{\Vn{v}_1}\Vn{v_2} \\
&= \Vn{v}_2 - (\norm{\Vn{v}_2}\cos\theta) \frac{\Vn{v}_1}{\norm{\Vn{v}_1}}\\
&= \Vn{v}_2 - \left(\frac{\norm{\Vn{v}_2}}{\norm{\Vn{v}_1}}\right)
\left(\frac{\Vn{v}_1\cdot\Vn{v}_2}{\norm{\Vn{v}_1}\norm{\Vn{v}_2}}\right)\Vn{v}_1\\
&= \Vn{v}_2 - \left(\frac{\Vn{v}_1\cdot\Vn{v}_2}{\norm{\Vn{v}_1} \norm{\Vn{v}_1}}\right)\Vn{v}_1 \\
&= \Vn{v}_2 - \frac{\Vn{v}_1\cdot\Vn{v}_2}{\Vn{v}_1\cdot\Vn{v}_1}\Vn{v}_1
\end{salign}
\end{minipage}
\begin{minipage}[m]{0.3\textwidth}
\centering
\begin{tikzpicture}[x=1cm,y=1cm]
\draw[->, line width = 1.25pt](0,0)--(0,1.5);
\draw[->, line width = 1.25pt](0,0)--(1.25,0.75);
\draw[->, dashed, line width = 1.25pt](0,0)--(1.25,0);
\draw[-, dashed, line width = 0.5pt](1.25,0.75)--(0,0.75);
\draw[->, dashed, line width = 0.5pt](1.25,0.75)--(1.25,0);
\draw[->, line width=1.25pt](0,0)--(0,0.75);
\node[label={180:{$proj_{\Vn{v}_1}\Vn{v}_2$}}] at (0,0.75) {};
\node[label={90:{$\Vn{v}_1$}}] (P) at (0,1.5) {};
\node[label={0:{$\Vn{v}_2$}}] (P') at (1.25, 0.75) {};
\node[label={0:{$\Vn{v}_{2\perp}$}}] (P'') at (1.25,0) {};
\node[label={87.5:{$\theta$}}] (origin) at (0,0) {};
%\draw[->] (1,1.5) (P) to [bend left] (P');
\end{tikzpicture}
\end{minipage}
}
\item \Que{
Show that $\mathbb{V}_\perp = \{\Vn{v}_1,\Vn{v}_{2\perp}\}$\ consists of a set of independent vectors.
}
\Ans{
Suppose $\mathbb{V}_\perp$\ is not independent, thus there exists $x_1,x_2 \in\mathbb{R}$\ such that $\Vn{0}=x_1\Vn{v}_1 + x_2\Vn{v}_{2\perp}$\ and at least one $x_i$\ is non-zero.
\begin{align*}
\Vn{0} &= x_1\Vn{v}_1 + x_2\Vn{v}_{2\perp}\\
\Vn{0} &= x_1\Vn{v}_1 + x_2\left(\Vn{v}_2 - \frac{\Vn{v}_1\cdot\Vn{v}_2}{\Vn{v}_1\cdot\Vn{v}_1}\Vn{v}_1\right)
= \left(x_1-x_2\frac{\Vn{v}_1\cdot\Vn{v}_2}{\Vn{v}_1\cdot\Vn{v}_1}\right)\Vn{v}_1 + x_2\Vn{v}_2
\shortintertext{since we know that $\Vn{v}_1, \Vn{v}_2$\ form a basis, we know that only the trivial solution to $\Vn{0}=x_1^\prime\Vn{v}_1+x_1^\prime\Vn{v}_2$\ exists, thus $x_1^\prime=0$\ and $x_2^\prime=0$\ and}
x_2\prime&=x_2=0\\
x_1\prime&=x_1-x_2\frac{\Vn{v}_1\cdot\Vn{v}_2}{\Vn{v}_1\cdot\Vn{v}_1}=0 \\
x_1&= x_2\frac{\Vn{v}_1\cdot\Vn{v}_2}{\Vn{v}_1\cdot\Vn{v}_1} + x_1^\prime
= 0\frac{\Vn{v}_1\cdot\Vn{v}_2}{\Vn{v}_1\cdot\Vn{v}_1}+0 = 0
\end{align*}
And we have reached a contradiction since $x_1=0$\ and $x_2=0$\ contradicts our initial claim that at least one is non-zero.
Therefore $\mathbb{V}_\perp$\ is a set of independent vectors.
}
~\\
%\newpage
\item \Que{
Show that the span of $\mathbb{V}$\ is the same as the span of $\mathbb{V}_\perp$. We say $\mathbb{V}_\perp$\ forms an orthogonal basis for $\mathbb{V}$.
}
\Ans{
Let $\Vn{x} = x_1\Vn{v}_1 + x_2\Vn{v}_2$ be a non-zero vector. We want to find $x_1^\prime, x_2^\prime$\ such that
$\Vn{x} = x_1^\prime\Vn{v}_1 + x_2^\prime\Vn{v}_{2\perp}$.
\begin{align*}
\Vn{x} &= x_1\Vn{v}_1 + x_2\Vn{v}_2 \\
\Vn{x}-x_2proj_{\Vn{v}_1}\Vn{v}_2 &= x_1\Vn{v}_1 + x_2\Vn{v}_2 - x_2proj_{\Vn{v}_1}\Vn{v}_2 \\
&= x_1\Vn{v}_1 + x_2\left(\Vn{v}_2 - proj_{\Vn{v}_1}\Vn{v}_2\right) \\
&= x_1\Vn{v}_1 + x_2\Vn{v}_{2\perp}\\
\Vn{x} &= x_1\Vn{v}_1 + x_2\Vn{v}_{2\perp} + x_2proj_{\Vn{v}_1}\Vn{v}_2 \\
&= x_1\Vn{v}_1 + x_2\Vn{v}_{2\perp} + x_2\left(\frac{\Vn{v}_1\cdot\Vn{v}_2}{\Vn{v}_1\cdot\Vn{v}_1}\Vn{v}_1\right) \\
&= \left(x_1+x_2\frac{\Vn{v}_1\cdot\Vn{v}_2}{\Vn{v}_1\cdot\Vn{v}_1}\right)\Vn{v}_1 + x_2\Vn{v}_{2\perp}
\end{align*}
Thus we have found $x_1^\prime = x_1+x_2\frac{\Vn{v}_1\cdot\Vn{v}_2}{\Vn{v}_1\cdot\Vn{v}_1}$\ and $x_2^\prime=x_2$ and therefore $\mathbb{V}_\perp$\ is an orthogonal basis for $\mathbb{V}$.
}
\item \Que{
Find an orthogonal basis for $\mathbb{U}=\{\Vn{u}_1,\Vn{u}_2,\Vn{u}_3\}$, assuming the vectors are independent.
}
\Ans{
We will try to form $\mathbb{U}_\perp = \{\Vn{v}_{1},\Vn{v}_{2},\Vn{v}_{3}\}$. Let
\begin{align*}
\Vn{v}_1 &= \Vn{u}_1 \\
\Vn{v}_2 &= \Vn{u}_2 - proj_{\Vn{v}_{1}}\Vn{u}_2 \\
&= \Vn{u}_2 - \frac{\Vn{v}_1\cdot\Vn{u}_2}{\Vn{v}_1\cdot\Vn{v}_1}\Vn{v}_1 \\
\Vn{v}_3 &= \Vn{u}_3 - proj_{\Vn{v}_1}\Vn{u}_3 - proj_{\Vn{v}_2}\Vn{u}_3\\
&= \Vn{u}_3 - \frac{\Vn{v}_1\cdot\Vn{u}_3}{\Vn{v}_1\cdot\Vn{v}_1}\Vn{v}_1 -
\frac{\Vn{v}_2\cdot\Vn{u}_3}{\Vn{v}_2\cdot\Vn{v}_2}\Vn{v}_2
\end{align*}
}
\item
Suppose vectors of $\mathbb{W}=\{\Vn{w}_1,\Vn{w}_2,\Vn{w}_3\}$\ are not independent. What happens when you try to form $\mathbb{W}_\perp$?
\Ans{
Let $\Vn{w}_3 = a_1\Vn{w}_1 + a_2\Vn{w}_2$. We will try to form $\mathbb{W}_\perp=\{\Vn{v}_1,\Vn{v}_2,\Vn{v}_3\}$:
\begin{align*}
\Vn{v}_1 &= \Vn{w}_1 \\
\Vn{v}_2 &= \Vn{w}_2 - \frac{\Vn{w}_1\cdot\Vn{w}_2}{\Vn{w}_1\cdot\Vn{w}_1}\Vn{w}_1\\
\Vn{v}_3 &= \Vn{w}_3 - \frac{\Vn{w}_1\cdot\Vn{w}_3}{\Vn{w}_1\cdot\Vn{w}_1}\Vn{w}_1 - \frac{\Vn{w}_2\cdot\Vn{w}_3}{\Vn{w}_2\cdot\Vn{w}_2}\Vn{w}_2 \\
&= (a_1\Vn{w}_1 + a_2\Vn{w}_2) -
\left(\frac{a_1(\Vn{w}_1\cdot\Vn{w}_1)+a_2(\Vn{w}_1\cdot\Vn{w}_2)}{\Vn{w}_1\cdot\Vn{w}_1}\Vn{w}_1\right) -
\left(\frac{a_1(\Vn{w}_1\cdot\Vn{w}_2)+a_2(\Vn{w}_2\cdot\Vn{w}_2)}{\Vn{w}_2\cdot\Vn{w}_2}\Vn{w}_2\right)\\
&= (a_1\Vn{w}_1 + a_2\Vn{w}_2) -
\left( a_1 + a_2\frac{\Vn{w}_1\cdot\Vn{w}_2}{\Vn{w}_1\cdot\Vn{w}_1}\right)\Vn{w}_1 -
\left(a_2 + a_1\frac{\Vn{w}_1\cdot\Vn{w}_2}{\Vn{w}_2\cdot\Vn{w}_2}\right)\Vn{w}_2 \\
&= -a_2\frac{\Vn{w}_1\cdot\Vn{w}_2}{\Vn{w}_1\cdot\Vn{w}_1}\Vn{w}_1 -
a_1\frac{\Vn{w}_1\cdot\Vn{w}_2}{\Vn{w}_2\cdot\Vn{w}_2}\Vn{w}_2 \\
&= -a_2\frac{\Vn{w}_1\cdot\Vn{w}_2}{\Vn{w}_1\cdot\Vn{w}_1}\Vn{v}_1 -
\left(a_1\frac{\Vn{w}_1\cdot\Vn{w}_2}{\Vn{w}_2\cdot\Vn{w}_2}\right)
\left(\Vn{v}_2 + \frac{\Vn{w}_1\cdot\Vn{w}_2}{\Vn{w}_1\cdot\Vn{w}_1}\Vn{v}_1\right)\\
&= \frac{\Vn{w}_1\cdot\Vn{w}_2}{\Vn{w}_1\cdot\Vn{w}_1}
\left(a_1\frac{\Vn{w}_1\cdot\Vn{w}_2}{\Vn{w}_2\cdot\Vn{w}_2}-a_2\right)\Vn{v}_1 +
a_1\frac{\Vn{w}_1\cdot\Vn{w}_2}{\Vn{w}_2\cdot\Vn{w}_2}\Vn{v}_2
\end{align*}
Thus we see that $\Vn{v}_3$\ is a linear combination of $\Vn{v}_1,\Vn{v}_2$\ and thus $\mathbb{W}_\perp$\ is not an orthogonal basis.
}
\end{enumerate}
%~\\
\newpage
\item Answer the following questions.
\begin{enumerate}[label=(\alph*)]
\item \Que{
Let $A=\begin{Mat}{2} 1 & 1 \\ 1 & 0 \end{Mat}$, and $B=\begin{Mat}{3} 1 & -1 & 0 \\ 2 & 0 & 1 \end{Mat}$. If possible, find $(AB)^2$\ and $(B^TB)^{-1}$.
}
\Ans{
Since $A$\ is $2\times 2$\ and $B$\ is $2\times 3$\ it follows that $AB$\ is $2\times 3$, thus $(AB)^2$\ is undefined. \\
\begin{align*}
B^TB &= \begin{Mat}{2} 1 & 2 \\ -1 & 0 \\ 0 & 1 \end{Mat}
\begin{Mat}{3} 1 & -1 & 0 \\ 2 & 0 & 1 \end{Mat}
= \begin{Mat}{3} 5 & -1 & 2 \\ -1 & 1 & 0 \\ 2 & 0 & 1 \end{Mat} \\
\shortintertext{to find the inverse we row reduce:}
&\begin{Amat2}{3} 5 & -1 & 2 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 & 0 & 1 \end{Amat2}
\to
\begin{Amat2}{3} 5 & -1 & 2 & 1 & 0 & 0 \\
0 & 4 & 2 & 1 & 5 & 0 \\
2 & 0 & 1 & 0 & 0 & 1 \end{Amat2}
\to
\begin{Amat2}{3} 5 & -1 & 2 & 1 & 0 & 0 \\
0 & 4 & 2 & 1 & 5 & 0 \\
0 & 2 & 1 & -2 & 0 & 5 \end{Amat2}
\to\\
& \begin{Amat2}{3} 5 & -1 & 2 & 1 & 0 & 0 \\
0 & 4 & 2 & 1 & 5 & 0 \\
0 & 0 & 0 & -5 & -5 & 10 \end{Amat2}
\end{align*}
and we have reached a situation in which $B^TB$\ is not invertible, thus $(B^TB)^{-1}$\ is undefined.
}
\item \Que{
Find the angle between $\Vn{v}=\Ve{1,3,-1,-1}$\ and $\Vn{u}=\Ve{1,1,-1,4}$.
}
\Ans{
\begin{align*}
\norm{\Vn{v}} &= \sqrt{1^2+3^2+(-1)^2+(-1)^2} = \sqrt{12} = 2\sqrt{3} \\
\norm{\Vn{u}} &= \sqrt{1^2+1^2+(-1)^2+4^2} = \sqrt{19} \\
\Vn{v}\cdot\Vn{u} &= (1\cdot 1)+(3\cdot 1)+(-1\cdot -1)+(-1\cdot 4) = 1+3+1-4 = 1 \\
\cos\theta &= \frac{\Vn{v}\cdot\Vn{u}}{\norm{\Vn{v}}\norm{\Vn{u}}} = \frac{1}{2\sqrt{57}} = \frac{\sqrt{57}}{114}\\
\theta &= \cos^{-1} \frac{\sqrt{57}}{114} \approx 1.504
\end{align*}
}
\item \Que{
Prove or disprove: if $\mathbb{V}$\ is a vector space, then Null($\mathbb{V}$) is a vector space.
}
\Ans{
Let $V$\ be the matrix whose columns are the vectors spanning $\mathbb{V}$, and let $\Vn{x}_1$\ and $\Vn{x}_2$\ be vectors in Null($\mathbb{V}$), and $c \in \mathbb{R}$. We can see from the definition of Nullspace that $V\Vn{x}_1=\Vn{0}$\ and $V\Vn{x}_2=\Vn{0}$. Since $\mathbb{V}$ is a vector space we can say
\begin{align*}
V(\Vn{x}_1+\Vn{x}_2) &= V\Vn{x}_1+V\Vn{x}_2=\Vn{0}+\Vn{0}=\Vn{0}
\shortintertext{thus Null($\mathbb{V}$) is closed under vector addition}
V(c\Vn{x}_1)&=c(V\Vn{x}_1)=c\Vn{0}=\Vn{0}
\shortintertext{thus Null($\mathbb{V}$) is closed under scalar multiplication}
V(\Vn{x}_1 + \Vn{0}) &= V\Vn{x}_1+V\Vn{0} = \Vn{0}+\Vn{0}=\Vn{0}
\shortintertext{thus Null($\mathbb{V}$) contains a zero vector}
V(\Vn{x}_1 + (-1)\Vn{x}_1) &= V((1-1)\Vn{x}_1) = V(0\Vn{x}_1) = 0V(\Vn{x}_1)=\Vn{0}
\shortintertext{thus Null($\mathbb{V}$) contains an additive inverse for each element}
\end{align*}
Since Null($\mathbb{V}$) $\subseteq$\ Col($\mathbb{V}$) which is a vectorspace, the other six properties are inherited and we can conclude from these four properties that Null($\mathbb{V}$) is a vector space if $\mathbb{V}$\ is a vector space.
}
\end{enumerate}
\end{enumerate}
\end{document}