From 82ca6bd579981de9241c1874e09716d16754d535 Mon Sep 17 00:00:00 2001 From: Krzysztof Wojtas Date: Fri, 6 Dec 2024 00:53:40 +0100 Subject: [PATCH] #168 4-4i --- chapter4/problems/4/g.tex | 6 +++- chapter4/problems/4/i.tex | 61 ++++++++++++++++++++++++++++++++++++++- 2 files changed, 65 insertions(+), 2 deletions(-) diff --git a/chapter4/problems/4/g.tex b/chapter4/problems/4/g.tex index ffed686..fb8891d 100644 --- a/chapter4/problems/4/g.tex +++ b/chapter4/problems/4/g.tex @@ -1,5 +1,9 @@ Let $n_0>0$ be the implicit threshold constant, and let $d>0$ be another constant such that $T(n)\le d$ for all $n0$. +We'll prove by induction that +\[ + H_n-H_{n_0} < T(n) < H_n+d +\] +for all $n>0$. First, let $00$ be the implicit threshold constant, and let $d>0$ be another constant such that $T(n)\le d$ for all $n0$. + +Let $0