-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathassume_test.go
251 lines (228 loc) · 8.35 KB
/
assume_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
// Copyright William Schwartz 2014. See the LICENSE file for more information.
package pigosat
import (
"fmt"
"reflect"
"testing"
)
func TestLitArrayToSlice(t *testing.T) {
// null pointers
assertPanics(t, "litArrayToSlice", func() { litArrayToSlice(nil, 0) })
assertPanics(t, "litArrayToSlice", func() { litArrayToSlice(nil, 1) })
// not zero terminated
badPtr := &cArray123[0]
assertPanics(t, "litArrayToSlice", func() { litArrayToSlice(badPtr, 1) })
assertPanics(t, "litArrayToSlice", func() { litArrayToSlice(badPtr, 2) })
// zero length
for maxLen := 0; maxLen <= 2; maxLen++ {
if ls := litArrayToSlice(&cZero, 0); len(ls) != 0 {
t.Errorf("Test 0-length litArrayToSlice, maxLen==%d: return value has length %d",
maxLen, len(ls))
}
}
// works correctly
ptr := &cArray1230[0]
expected := []Literal{1, 2, 3}
for maxLen := 3; maxLen <= 10; maxLen++ {
if ls := litArrayToSlice(ptr, maxLen); !reflect.DeepEqual(ls, expected) {
t.Errorf("Test litArrayToSlice correct, maxLen==%d: expected %v but got %v",
maxLen, expected, ls)
}
}
}
func TestAssumptionsSucceeding(t *testing.T) {
successTests := []struct {
assumpts []Literal // The literals which should be assumed true/false
solutions int // The number of solutions that we expect to produce
}{
{[]Literal{1}, 10}, // We use formulaTests[0].formula below
{[]Literal{2}, 9},
{[]Literal{3}, 6},
{[]Literal{4, 5}, 4},
}
for i, at := range successTests {
t.Run(fmt.Sprintf("successTests[%d]", i), func(t *testing.T) {
p, _ := New(nil)
p.Add(formulaTests[0].formula)
count := 0
for ; ; count++ {
for _, lit := range at.assumpts {
p.Assume(lit)
}
sol, status := p.Solve()
if status != Satisfiable {
break
}
// All the UNSAT methods should give zero answers.
if p.FailedAssumption(at.assumpts[0]) {
t.Errorf("FailedAssumption: expected %v not to be failed", at.assumpts[0])
}
if r := p.FailedAssumptions(); !reflect.DeepEqual(r, []Literal{}) {
t.Errorf("FailedAssumptions: expected [], got %v", r)
}
p.BlockSolution(sol)
}
if count != at.solutions {
t.Errorf("Expected %d solution(s) for assumptions %v; got %d",
at.solutions, at.assumpts, count)
}
})
}
}
func TestAssumptionsFailing(t *testing.T) {
p, _ := New(nil)
p.Add(formulaTests[0].formula)
p.Assume(3)
p.Assume(4)
p.Assume(5)
p.Solve()
failed := []Literal{3, 4}
if actual := p.FailedAssumptions(); !reflect.DeepEqual(failed, actual) {
t.Errorf("Expected failed assumptions %v != %v actual", failed, actual)
}
for _, f := range failed {
if !p.FailedAssumption(f) {
t.Errorf("Expected literal %v to be a failed assumption", f)
}
}
i, wanted := 0, [][]Literal{{3, 5}, {3, 5}, {5, 4}, {}}
for a := p.MaxSatisfiableAssumptions(); len(a) > 0; i++ {
if !reflect.DeepEqual(a, wanted[i]) {
t.Errorf("(Next)MaxSat'Assumpt's: Got %v wanted %v", a, wanted[i])
}
a = p.NextMaxSatisfiableAssumptions()
}
if a := p.MaxSatisfiableAssumptions(); !reflect.DeepEqual(a, []Literal{}) {
t.Errorf("MaxSatisfiableAssumptions: CNF inconsistent, so wanted []Literal{}, but got %v", a)
}
}
// TestCrashOnUnsatResetFailedAssumptions tests that if you reset the
// assumptions after Solve returns UNSAT then FailedAssumption(s) do not crash.
func TestCrashOnUnsatResetFailedAssumptions(t *testing.T) {
ft := formulaTests[0]
assertUnsat := func(p *Pigosat) {
if r := p.Res(); r != Unsatisfiable {
t.Fatalf("Expected %v, got %v", Unsatisfiable, r)
}
}
run := func(name string, f func(*Pigosat)) {
t.Run(name, func(t *testing.T) {
p, _ := New(nil)
p.Add(ft.formula)
p.Assume(3)
p.Assume(4)
p.Assume(5)
p.Solve()
assertUnsat(p)
if !p.FailedAssumption(3) {
t.Fatalf("Expected assumption '3' to fail")
}
assertUnsat(p)
f(p)
assertUnsat(p)
// Either the next two assertions work or they crash with this message:
// *** picosat: API usage: expected to be in UNSAT state
// SIGABRT: abort
if p.FailedAssumption(3) {
t.Errorf("Did not expect assumption '3' to fail")
}
if r := p.FailedAssumptions(); len(r) != 0 {
t.Errorf("Expected []Literal{}, got %v", r)
}
})
}
run("Assume", func(p *Pigosat) { p.Assume(3) })
run("BlockSolution", func(p *Pigosat) {
if err := p.BlockSolution(ft.expected); err != nil {
t.Fatalf(err.Error())
}
})
run("Add-empty", func(p *Pigosat) { p.Add(Formula{{3}}) })
run("Add-nil", func(p *Pigosat) { p.Add(Formula{nil}) })
}
// TestNextMaxSatisfiableAssumptionsAsIterator tests that NextMaxSatisfiableAssumptions
// can be used as an iterator. In particular, this test panics if Solve calls
// BlockSolution when Solve returns Satisfiable.
func TestNextMaxSatisfiableAssumptionsAsIterator(t *testing.T) {
var formula = Formula{{1, 2, 3}, {1, 2}, {2, 3}}
p, _ := New(nil)
p.Add(formula)
p.Assume(1)
p.Assume(-2)
p.Solve()
p.Assume(-1)
p.Assume(-2)
ms := make([][]Literal, 0)
for m := p.NextMaxSatisfiableAssumptions(); len(m) > 0; m = p.NextMaxSatisfiableAssumptions() {
ms = append(ms, m)
}
expected := [][]Literal{{-1}, {-2}}
if !reflect.DeepEqual(ms, expected) {
t.Errorf("Expected %v. Got %v.", expected, ms)
}
}
// ExamplePigosat_Assume demonstrates how to use Assume and related methods.
func ExamplePigosat_Assume() {
var formula = Formula{{1, 2, 3}, {1, 2}, {2, 3}}
p, _ := New(nil)
p.Add(formula)
fmt.Println("Formula:", formula)
solution, status := p.Solve()
fmt.Println("No assumptions:", status, "solution ==", solution)
// Satisfiable assumptions
fmt.Println()
fmt.Println("**** SATISFIABLE ASSUMPTIONS ****")
p.Assume(1)
p.Assume(-2)
// Assumptions do not change the number of clauses.
fmt.Println("Assume 1, -2 : Number of clauses:", p.AddedOriginalClauses())
solution, status = p.Solve()
fmt.Println(" ", status, "solution ==", solution)
// Calls to p.Add or p.Assume cancel assumptions 1 and -2
// immediately, or a second call to p.Solve also cancels the assumptions.
p.Assume(-3)
solution, status = p.Solve()
fmt.Println("Assume -3:", status, "solution ==", solution)
// Unsatisfiable assumptions
fmt.Println()
fmt.Println("**** UNSATISFIABLE ASSUMPTIONS ****")
p.Assume(-1) // assume unit clause Clause{-1, 0}
p.Assume(-2) // assume unit clause Clause{-2, 0}
solution, status = p.Solve() // assumes -1 and -2 hold
fmt.Println("Assume -1, -2 :", status, "solution ==", solution)
// Assumptions -1 and -2 caused unsatisfiability.
fmt.Println(" Failed assumptions:", p.FailedAssumptions())
fmt.Println(" Assumption -1 failed:", p.FailedAssumption(-1))
fmt.Println(" Assumption -2 failed:", p.FailedAssumption(-2))
// Not every subset of the assumptions causes unsatisfiability.
// p.MaxSatisfiableAssumptions would return the same as
// p.NextMaxSatisfiableAssumptions, but the return value wouldn't change
// with each call like it does with p.NextMaxSatisfiableAssumptions.
fmt.Println(" Maximal satisfiable subset of assumptions 1:", p.NextMaxSatisfiableAssumptions())
fmt.Println(" Maximal satisfiable subset of assumptions 2:", p.NextMaxSatisfiableAssumptions())
fmt.Println(" Maximal satisfiable subset of assumptions 3:", p.NextMaxSatisfiableAssumptions())
// p.NextMaxSatisfiableAssumptions does add clauses.
fmt.Println(" Number of clauses:", p.AddedOriginalClauses())
// Unknown status
// Assumptions are valid but p.Solve returns no Solution assignment. The
// solver knowns the status is Unknown until a call to p.Assume,
// p.Add, or p.Solve resets the assumptions.
// Output:
// Formula: [[1 2 3] [1 2] [2 3]]
// No assumptions: Satisfiable solution == {1:true , 2:true , 3:true}
//
// **** SATISFIABLE ASSUMPTIONS ****
// Assume 1, -2 : Number of clauses: 3
// Satisfiable solution == {1:true , 2:false, 3:true}
// Assume -3: Satisfiable solution == {1:true , 2:true , 3:false}
//
// **** UNSATISFIABLE ASSUMPTIONS ****
// Assume -1, -2 : Unsatisfiable solution == {}
// Failed assumptions: [-1 -2]
// Assumption -1 failed: true
// Assumption -2 failed: true
// Maximal satisfiable subset of assumptions 1: [-1]
// Maximal satisfiable subset of assumptions 2: [-2]
// Maximal satisfiable subset of assumptions 3: []
// Number of clauses: 5
}