forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetafile.yaml
85 lines (85 loc) · 3.38 KB
/
metafile.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
Collections:
- Name: PIDNet
License: Apache License 2.0
Metadata:
Training Data:
- Cityscapes
Paper:
Title: 'PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller'
URL: https://arxiv.org/pdf/2206.02066.pdf
README: configs/pidnet/README.md
Frameworks:
- PyTorch
Models:
- Name: pidnet-s_2xb6-120k_1024x1024-cityscapes
In Collection: PIDNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.74
mIoU(ms+flip): 80.87
Config: configs/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes.py
Metadata:
Training Data: Cityscapes
Batch Size: 12
Architecture:
- PIDNet-S
- PIDNet
Training Resources: 2x A100 GPUS
Memory (GB): 3.38
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700-bb8e3bcc.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700.json
Paper:
Title: 'PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller'
URL: https://arxiv.org/pdf/2206.02066.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/pidnet.py
Framework: PyTorch
- Name: pidnet-m_2xb6-120k_1024x1024-cityscapes
In Collection: PIDNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.22
mIoU(ms+flip): 82.05
Config: configs/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes.py
Metadata:
Training Data: Cityscapes
Batch Size: 12
Architecture:
- PIDNet-M
- PIDNet
Training Resources: 2x A100 GPUS
Memory (GB): 5.14
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452-f9bcdbf3.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452.json
Paper:
Title: 'PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller'
URL: https://arxiv.org/pdf/2206.02066.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/pidnet.py
Framework: PyTorch
- Name: pidnet-l_2xb6-120k_1024x1024-cityscapes
In Collection: PIDNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.89
mIoU(ms+flip): 82.37
Config: configs/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes.py
Metadata:
Training Data: Cityscapes
Batch Size: 12
Architecture:
- PIDNet-L
- PIDNet
Training Resources: 2x A100 GPUS
Memory (GB): 5.83
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514-0783ca6b.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514.json
Paper:
Title: 'PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller'
URL: https://arxiv.org/pdf/2206.02066.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/pidnet.py
Framework: PyTorch