-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·307 lines (266 loc) · 14.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Wei-Cheng (Winston) Lin
Main training script.
"""
import os
import torch
import sys
import numpy as np
from tqdm import tqdm
from utils import cc_coef, evaluation_metrics, TempParymidPool, RdnMultiRslChunk
import torch.optim as optim
import matplotlib.pyplot as plt
from dataloader import MspPodcastDataset_SpeechText
from torch.utils.data.sampler import SubsetRandomSampler
from model import TransformerENC_CoAtten
def collate_fn_train(batch):
# list of batched data/labels
data_speech, data_text, label_act, label_dom, label_val = zip(*batch)
actual_lens_speech, actual_lens_text = [], []
Batch_PadData_Speech, Batch_PadData_Text = [], []
for i in range(len(data_speech)):
# temporal pooling operation for chunk-level speech representation
ds, actualL = RdnMultiRslChunk(data_speech[i], sample_pool=[0.2, 0.4, 0.6, 0.8, 1.0])
ds = TempParymidPool(ds, actual_lengths=actualL)
dt = data_text[i]
# prepend the global sentence-level summary token
ds = np.concatenate((np.ones((1,ds.shape[-1])), ds),axis=0)
dt = np.concatenate((np.ones((1,dt.shape[-1])), dt),axis=0)
# padding sequence to the desired max_length & record actual lengths
actual_lens_speech.append(len(ds))
actual_lens_text.append(len(dt))
_pads_sph = np.zeros((max_length-len(ds),ds.shape[-1]))
_pads_txt = np.zeros((max_length-len(dt),dt.shape[-1]))
ds = np.concatenate((ds, _pads_sph),axis=0)
dt = np.concatenate((dt, _pads_txt),axis=0)
Batch_PadData_Speech.append(ds)
Batch_PadData_Text.append(dt)
# generating the padding masks
actual_lens_speech = torch.from_numpy(np.array(actual_lens_speech))
actual_lens_text = torch.from_numpy(np.array(actual_lens_text))
pads_mask_sph = torch.arange(max_length).expand(len(actual_lens_speech), max_length) >= actual_lens_speech.unsqueeze(1)
pads_mask_txt = torch.arange(max_length).expand(len(actual_lens_text), max_length) >= actual_lens_text.unsqueeze(1)
# prepare numpy arrays to Torch Tensor
Batch_PadData_Speech = np.array(Batch_PadData_Speech)
Batch_PadData_Text = np.array(Batch_PadData_Text)
label_act = np.array(label_act)
label_dom = np.array(label_dom)
label_val = np.array(label_val)
return torch.from_numpy(Batch_PadData_Speech), torch.from_numpy(Batch_PadData_Text), torch.from_numpy(label_act), torch.from_numpy(label_dom), torch.from_numpy(label_val), pads_mask_sph, pads_mask_txt
def collate_fn_eval(batch):
# list of batched data/labels
data_speech, data_text, label_act, label_dom, label_val = zip(*batch)
actual_lens_speech, actual_lens_text = [], []
Batch_PadData_Speech, Batch_PadData_Text = [], []
for i in range(len(data_speech)):
# temporal pooling operation for chunk-level speech representation
ds, actualL = RdnMultiRslChunk(data_speech[i], sample_pool=[1.0])
ds = TempParymidPool(ds, actual_lengths=actualL)
dt = data_text[i]
# prepend the global sentence-level summary token
ds = np.concatenate((np.ones((1,ds.shape[-1])), ds),axis=0)
dt = np.concatenate((np.ones((1,dt.shape[-1])), dt),axis=0)
# padding sequence to the desired max_length & record actual lengths
actual_lens_speech.append(len(ds))
actual_lens_text.append(len(dt))
_pads_sph = np.zeros((max_length-len(ds),ds.shape[-1]))
_pads_txt = np.zeros((max_length-len(dt),dt.shape[-1]))
ds = np.concatenate((ds, _pads_sph),axis=0)
dt = np.concatenate((dt, _pads_txt),axis=0)
Batch_PadData_Speech.append(ds)
Batch_PadData_Text.append(dt)
# generating the padding masks
actual_lens_speech = torch.from_numpy(np.array(actual_lens_speech))
actual_lens_text = torch.from_numpy(np.array(actual_lens_text))
pads_mask_sph = torch.arange(max_length).expand(len(actual_lens_speech), max_length) >= actual_lens_speech.unsqueeze(1)
pads_mask_txt = torch.arange(max_length).expand(len(actual_lens_text), max_length) >= actual_lens_text.unsqueeze(1)
# prepare numpy arrays to Torch Tensor
Batch_PadData_Speech = np.array(Batch_PadData_Speech)
Batch_PadData_Text = np.array(Batch_PadData_Text)
label_act = np.array(label_act)
label_dom = np.array(label_dom)
label_val = np.array(label_val)
return torch.from_numpy(Batch_PadData_Speech), torch.from_numpy(Batch_PadData_Text), torch.from_numpy(label_act), torch.from_numpy(label_dom), torch.from_numpy(label_val), pads_mask_sph, pads_mask_txt
def model_validation(model, valid_loader):
model.eval()
with torch.no_grad():
batch_loss_valid_all = []
for _, data_batch in enumerate(tqdm(valid_loader, file=sys.stdout)):
# input Tensor data/labels/masks
inp_ds, inp_dt, tar_act, tar_dom, tar_val, msk_ds, msk_dt = data_batch
inp_ds, inp_dt = inp_ds.cuda().float(), inp_dt.cuda().float()
tar_act, tar_dom, tar_val = tar_act.cuda().float(), tar_dom.cuda().float(), tar_val.cuda().float()
msk_ds, msk_dt = msk_ds.cuda(), msk_dt.cuda()
# models flow
pred_act, pred_dom, pred_val = model(inp_ds, inp_dt, msk_ds, msk_dt)
# loss calculation
loss = (cc_coef(pred_act, tar_act) + cc_coef(pred_dom, tar_dom) + cc_coef(pred_val, tar_val))/3
batch_loss_valid_all.append(loss.data.cpu().numpy())
torch.cuda.empty_cache()
return np.mean(batch_loss_valid_all)
def model_testing(model, test_loader):
# loading de-norm parameters
from scipy.io import loadmat
norm_parameters_speech = 'NormTerm_Speech'
Label_mean_act = loadmat('./'+norm_parameters_speech+'/act_norm_means.mat')['normal_para'][0][0]
Label_std_act = loadmat('./'+norm_parameters_speech+'/act_norm_stds.mat')['normal_para'][0][0]
Label_mean_dom = loadmat('./'+norm_parameters_speech+'/dom_norm_means.mat')['normal_para'][0][0]
Label_std_dom = loadmat('./'+norm_parameters_speech+'/dom_norm_stds.mat')['normal_para'][0][0]
Label_mean_val = loadmat('./'+norm_parameters_speech+'/val_norm_means.mat')['normal_para'][0][0]
Label_std_val = loadmat('./'+norm_parameters_speech+'/val_norm_stds.mat')['normal_para'][0][0]
# model testing mode
model.eval()
Pred_Act, Pred_Dom, Pred_Val = [], [], []
GT_Act, GT_Dom, GT_Val = [], [], []
with torch.no_grad():
for _, data_batch in enumerate(tqdm(test_loader, file=sys.stdout)):
# input Tensor data/labels/masks
inp_ds, inp_dt, tar_act, tar_dom, tar_val, msk_ds, msk_dt = data_batch
inp_ds, inp_dt = inp_ds.cuda().float(), inp_dt.cuda().float()
msk_ds, msk_dt = msk_ds.cuda(), msk_dt.cuda()
# models flow
pred_act, pred_dom, pred_val = model(inp_ds, inp_dt, msk_ds, msk_dt)
# output predictions
Pred_Act.extend(pred_act.data.cpu().numpy().tolist())
Pred_Dom.extend(pred_dom.data.cpu().numpy().tolist())
Pred_Val.extend(pred_val.data.cpu().numpy().tolist())
GT_Act.extend(tar_act.data.cpu().numpy().tolist())
GT_Dom.extend(tar_dom.data.cpu().numpy().tolist())
GT_Val.extend(tar_val.data.cpu().numpy().tolist())
torch.cuda.empty_cache()
# de-norm GT and preds
Pred_Act = (Label_std_act* np.array(Pred_Act)) + Label_mean_act
Pred_Dom = (Label_std_dom* np.array(Pred_Dom)) + Label_mean_dom
Pred_Val = (Label_std_val* np.array(Pred_Val)) + Label_mean_val
GT_Act = (Label_std_act* np.array(GT_Act)) + Label_mean_act
GT_Dom = (Label_std_dom* np.array(GT_Dom)) + Label_mean_dom
GT_Val = (Label_std_val* np.array(GT_Val)) + Label_mean_val
# compute final CCC performance
pred_Act_CCC = evaluation_metrics(GT_Act, Pred_Act)[0]
pred_Dom_CCC = evaluation_metrics(GT_Dom, Pred_Dom)[0]
pred_Val_CCC = evaluation_metrics(GT_Val, Pred_Val)[0]
return pred_Act_CCC, pred_Dom_CCC, pred_Val_CCC
###############################################################################
# fixed parameters
iter_max = 5000
batch_size = 128
shuffle = True
max_length = 128
# I/O PATHs
SAVING_PATH = './Models/'
label_dir = './MSP-PODCAST-Publish-1.10/Labels/labels_consensus.csv'
root_dir = ['./MSP-PODCAST-Publish-1.10/Features/Wav2Vec1024/feat_mat/',
'./MSP-PODCAST-Publish-1.10/Features/RoBERTa768/feat_mat/']
# loading the model
model = TransformerENC_CoAtten(hidden_dim=256, nhead=4, max_len=max_length)
model.cuda()
# creating saving repo
if not os.path.isdir(SAVING_PATH):
os.makedirs(SAVING_PATH)
# loading datasets
training_dataset = MspPodcastDataset_SpeechText(root_dir, label_dir, split_set='Train')
validation_dataset = MspPodcastDataset_SpeechText(root_dir, label_dir, split_set='Development')
testing_dataset = MspPodcastDataset_SpeechText(root_dir, label_dir, split_set='Test1')
# shuffle datasets by generating random indices
train_indices = list(range(len(training_dataset)))
valid_indices = list(range(len(validation_dataset)))
if shuffle:
np.random.shuffle(train_indices)
# creating data samplers and loaders:
train_sampler = SubsetRandomSampler(train_indices)
train_loader = torch.utils.data.DataLoader(training_dataset,
batch_size=batch_size,
sampler=train_sampler,
num_workers=0,
pin_memory=True,
collate_fn=collate_fn_train)
valid_sampler = SubsetRandomSampler(valid_indices)
valid_loader = torch.utils.data.DataLoader(validation_dataset,
batch_size=batch_size,
sampler=valid_sampler,
num_workers=0,
pin_memory=True,
collate_fn=collate_fn_eval)
test_loader = torch.utils.data.DataLoader(testing_dataset,
batch_size=batch_size,
num_workers=0,
pin_memory=True,
collate_fn=collate_fn_eval)
# create an optimizer for training
optimizer = optim.Adam(model.parameters(), lr=0.0001)
# emotion-recog model training (Iteration-Based)
Iter_trainLoss_All = []
Iter_validLoss_All = []
val_loss_best = 0
iter_count = 0
num_iter_to_valid = 100
while True:
# stopping criteria
if iter_count>=iter_max:
break
for _, data_batch in enumerate(tqdm(train_loader, file=sys.stdout)):
# iter setting & record
model.train()
iter_count += 1
# input Tensor data/labels/masks
inp_ds, inp_dt, tar_act, tar_dom, tar_val, msk_ds, msk_dt = data_batch
inp_ds, inp_dt = inp_ds.cuda().float(), inp_dt.cuda().float()
tar_act, tar_dom, tar_val = tar_act.cuda().float(), tar_dom.cuda().float(), tar_val.cuda().float()
msk_ds, msk_dt = msk_ds.cuda(), msk_dt.cuda()
# models flow
pred_act, pred_dom, pred_val = model(inp_ds, inp_dt, msk_ds, msk_dt)
# MTL-CCC loss
loss = (cc_coef(pred_act, tar_act) + cc_coef(pred_dom, tar_dom) + cc_coef(pred_val, tar_val))/3
train_loss = loss.data.cpu().numpy()
Iter_trainLoss_All.append(train_loss)
# compute gradient and do Adam step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# clear GPU memory
torch.cuda.empty_cache()
# do the model validation every XX iterations
if iter_count%num_iter_to_valid==0:
print('validation process')
val_loss = model_validation(model, valid_loader)
Iter_validLoss_All.append(val_loss)
print('Iteration: '+str(iter_count)+' ,Training-loss: '+str(train_loss)+' ,Validation-loss: '+str(val_loss))
print('=================================================================')
# Checkpoint for saving best model based on val-loss
if iter_count/num_iter_to_valid==1:
val_loss_best = val_loss
torch.save(model.state_dict(), os.path.join(SAVING_PATH, 'TransformerCoAtten_iter'+str(iter_max)+'_batch'+str(batch_size)+'_AudioText_MultiRslParymidPool_MTL.pth.tar'))
print("=> Saving the initial best model (Iteration="+str(iter_count)+")")
else:
if val_loss_best > val_loss:
torch.save(model.state_dict(), os.path.join(SAVING_PATH, 'TransformerCoAtten_iter'+str(iter_max)+'_batch'+str(batch_size)+'_AudioText_MultiRslParymidPool_MTL.pth.tar'))
print("=> Saving a new best model (Iteration="+str(iter_count)+")")
print("=> Loss reduction from "+str(val_loss_best)+" to "+str(val_loss) )
val_loss_best = val_loss
else:
print("=> Validation Loss did not improve (Iteration="+str(iter_count)+")")
print('=================================================================')
# drawing loss curves
Iter_trainLoss_All = np.mean(np.array(Iter_trainLoss_All[:len(Iter_validLoss_All)*num_iter_to_valid]).reshape(-1, num_iter_to_valid), axis=1).tolist()
plt.title('Epoch-Loss Curve')
plt.plot(Iter_trainLoss_All,color='blue',linewidth=3)
plt.plot(Iter_validLoss_All,color='red',linewidth=3)
plt.savefig(os.path.join(SAVING_PATH, 'TransformerCoAtten_iter'+str(iter_max)+'_batch'+str(batch_size)+'_AudioText_MultiRslParymidPool_MTL.png'))
# re-loading the best model and do the testing stage
MODEL_PATH = SAVING_PATH+'TransformerCoAtten_iter'+str(iter_max)+'_batch'+str(batch_size)+'_AudioText_MultiRslParymidPool_MTL.pth.tar'
model = TransformerENC_CoAtten(hidden_dim=256, nhead=4, max_len=max_length)
model.load_state_dict(torch.load(MODEL_PATH))
model.cuda()
CCC_Act, CCC_Dom, CCC_Val = model_testing(model, test_loader)
print('#########################################################')
print('## Summary Performance on MSP-PODCAST v1.10 Test1 Set ##')
print('#########################################################')
print('Iterations: '+str(iter_max))
print('Batch_Size: '+str(batch_size))
print('Model_Type: TransformerCoAtten-AudioText-ParymidPool-MultiRslChunk')
print('Act-CCC: '+str(CCC_Act))
print('Dom-CCC: '+str(CCC_Dom))
print('Val-CCC: '+str(CCC_Val))
print('===================================================')