-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdisp_on_blocks.m
66 lines (58 loc) · 3.25 KB
/
disp_on_blocks.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
function [bx,by,corsh] = disp_on_blocks(im1,im2,blocksize,subpix)
% DISP_ON_BLOCKS calculates x- and y-displacements for each distinct block
% taken from the image im1. The size of the blocks is determind by the
% parameter blocksize. For each block in the image im1 the corresponding
% block in the image im2 is found (i.e., the block at the same position),
% and the cross-correlation function between the two blocks is formed.
% Coordinates of the peak of the cross-correlation function constitute
% the displacement vector of the block. (Displacements go from im1 to im2.)
% The parameter subpix determines whether the resulting values of displacements
% are integers or not; if subpix > 0, the values of displacements are
% non-integers, otherwise they are integers.
% bx is a matrix of x-displacements, by a matrix of y-displacements, and
% corsh the fft-shifted cross-correlation by block between im1 and im2.
% Xavier Trepat 07-07.
% Iva Marija Tolic-Norrelykke 03-21-01
%xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
if nargin < 4,
subpix = 0;
end;
% SUBTRACT THE MEAN OF EACH BLOCK
im1 = blkproc(im1,[blocksize blocksize],'x - mean2(x)');
im2 = blkproc(im2,[blocksize blocksize],'x - mean2(x)');
% myfun = @(x) x.data-mean2(x.data);
% im1 = blockproc(im1,[blocksize blocksize],myfun);
% im2 = blockproc(im2,[blocksize blocksize],myfun);
% % % MULTIPLY BY A 2D HANNING WINDOW
% im1 = blkproc(im1,[blocksize blocksize],'xhanning2D(x)');
% im2 = blkproc(im2,[blocksize blocksize],'xhanning2D(x)');
%xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
% CALCULATE THE CROSS-CORRELATION FUNCTION
autocor_whole1 = blkproc(im1,[blocksize blocksize],'ifft2((fft2(x)).*conj(fft2(x)))');
autocor_whole2 = blkproc(im2,[blocksize blocksize],'ifft2((fft2(x)).*conj(fft2(x)))');
autocor_max1 = blkproc(autocor_whole1,[blocksize blocksize],'repmat(x(1,1),size(x))');
autocor_max2 = blkproc(autocor_whole2,[blocksize blocksize],'repmat(x(1,1),size(x))');
cor_whole1 = blkproc(im1,[blocksize blocksize],'conj(fft2(x))');
cor_whole2 = blkproc(im2,[blocksize blocksize],'fft2(x)');
cor_whole = cor_whole2 .* cor_whole1; % takes the norm of the fourier transform at each point
cor_whole = blkproc(cor_whole,[blocksize blocksize],'ifft2(x)');
cor_whole = real(cor_whole) ./ sqrt(autocor_max1.*autocor_max2);
cor_whole(find(~isfinite(cor_whole))) = zeros(size(find(~isfinite(cor_whole))));
corsh = blkproc(cor_whole,[blocksize blocksize],'fftshift(x)');
%imagesc(corsh);
%whos corsh
%plot(corsh(100,:))
%user_entry = input('prompt')
%xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
% FIND THE PEAK OF THE CROSS-CORRELATION FUNCTION
%if subpix > 0,
% bx = blkproc(corsh,[blocksize blocksize],'x_cntr(x,2)');
% by = blkproc(corsh,[blocksize blocksize],'y_cntr(x,2)');
bx=blkproc(corsh,[blocksize blocksize],'center_x_1d(x)');
by=blkproc(corsh,[blocksize blocksize],'center_y_1d(x)');
%whos cliffxout
%user_entry = input('prompt')
%else
% bx = blkproc(corsh,[blocksize blocksize],'max_cor_bx(x)');
% by = blkproc(corsh,[blocksize blocksize],'max_cor_by(x)');
%end; %(if subpix > 0)