-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwriter.py
162 lines (132 loc) · 5.58 KB
/
writer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import numpy as np
from pandas import DataFrame
from typing import Tuple, List
class Writer:
def __init__(self, filename: str):
self.filename = self.change(filename)
@staticmethod
def change(filename: str) -> str:
"""
Formats the given filename.txt to filename_solucion.txt
:param filename:
:return: formatted filename
"""
filename_no_extension = filename.rsplit('.')[0]
return f'{filename_no_extension}_solucion.txt'
@staticmethod
def frame_assignment_table(matrix: np.ndarray) -> DataFrame:
"""
Creates a dataframe of the assignment table into
D1 D2 D3 Supply
S1 X X - X
S2 - - X X
:param matrix: ndarray with assigment values
:return: dataframe with replaced values & headers
"""
matrix[matrix == 0.0] = "-"
n, m = matrix.shape
row_headers = [f'S{i}' for i in range(1, n)] + ["Demand"]
columns_headers = [f'D{j}' for j in range(1, m)] + ["Supply"]
return DataFrame(matrix, row_headers, columns_headers)
@staticmethod
def frame_transportation_table(matrix: np.ndarray) -> DataFrame:
"""
Creates a dataframe of the transportation table into
V1=y V2=y V3=y
U1=x X X -
U2=x - - X
:param matrix: ndarray with dual variables and indicators
:return: dataframe with replaced values & headers
"""
# is none doesn't work for comparing values
matrix[matrix == None] = "-"
n, m = matrix.shape
v_row = matrix[-1]
u_column = matrix[:, -1]
matrix = np.delete(matrix, -1, axis=1)
matrix = np.delete(matrix, -1, axis=0)
column_headers = [f'V{i}={v_row[i - 1]}' for i in range(1, m)]
row_headers = [f'U{j}={u_column[j - 1]}' for j in range(1, n)]
return DataFrame(matrix, row_headers, column_headers)
def write_halting(self, message: str) -> None:
"""
Writes to console and the file a terminating error message
:param message: string to write
"""
print(message)
self.write_to_file(message)
def write_to_file(self, text: str) -> None:
"""
Generic function used to write into the end of the file
:param text: string to write
"""
with open(self.filename, 'a') as f:
f.write(text)
f.close()
def write_initial_cost(self, cost: int) -> None:
"""
Indicates to the user what was the initial transportation cost
:param cost: assignment sum to write
"""
print(f'[Initial transportation cost] = {cost}\n\n')
self.write_to_file(f'[Initial transportation cost] = {cost}\n\n')
def write_current_cost(self, cost: int) -> None:
"""
Indicates to the user what is the current transportation cost
:param cost: assignment sum to write
"""
self.write_to_file(f'[Current transportation cost] = {cost}\n\n')
def write_optimal_cost(self, cost: int) -> None:
"""
Indicates to the user what was the last calculated cost (most optimal)
:param cost: assignment sum to write
"""
print(f'[Optimal transportation cost] = {cost}\n\n')
self.write_to_file(f'[Optimal transportation cost] = {cost}\n\n')
def write_transportation_iteration(self, iteration: str,
transportation_matrix: np.ndarray,
assignment_matrix: np.ndarray,
final=False):
"""
Appends to the file the current state of the transportation
& assigment table
:param final: boolean in case the last iteration occurs
:param iteration: string of the current iteration
:param transportation_matrix: current transportation table
:param assignment_matrix: current assigment table
"""
transportation = self.frame_transportation_table(transportation_matrix)
assignment = self.frame_assignment_table(assignment_matrix)
state = f'{iteration}\n' + \
f'Transportation Table\n{transportation}\n\n' + \
f'Assignment Table\n{assignment}\n'
if final:
print(state)
self.write_to_file(state)
def write_loop(self, loop: List[Tuple], entering: Tuple, leaving: Tuple):
"""
Indicates what's the loop in a legible way:
start -> loop -> end
:param loop: list of indices where a loop is formed
:param entering: first index in the loop
:param leaving: index that has the lowest
assigment in the entire loop
"""
loop = [f'{pos} -> ' for pos in loop]
loop[-1] = loop[-1].replace('->', '')
loop = '[Loop] = ' + ''.join(loop)
entering = f'[Entering pos] = {entering}\n'
leaving = f'[Leaving pos] = {leaving}\n'
self.write_to_file(f'{entering}{leaving}{loop}\n\n')
def write_initial_solution(self, matrix: np.ndarray, demand: np.ndarray, supply: np.ndarray) -> None:
"""
Indicates what's the initial assigment table with the demand and supply column added
:param matrix: assigment table
:param demand: demand row of the cost table
:param supply: supply column of the cost table
"""
matrix[-1] = demand
matrix[:, -1] = supply
df = self.frame_assignment_table(matrix)
print(f'Inititial Assignment table\n{df}\n\n')
self.write_to_file(f'Assignment table\n{df}\n\n')