-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwindow_tracker.py
59 lines (44 loc) · 1.94 KB
/
window_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import cv2
import numpy as np
class WindowTracker:
RADIUS = 20
def __init__(self, frame, bbox):
frame_gray = self.norm(frame)
self.current_bbox = bbox
self.expected = frame_gray[bbox[1]:bbox[1] + bbox[3],
bbox[0]:bbox[0] + bbox[2]]
def norm(self, frame):
return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) / 255
def track(self, frame):
frame_gray = self.norm(frame)
bbox = self.current_bbox
best_error_value = -1
best_error_location = (0, 0)
# extend window by r pixel
# current_window = frame_gray[
# bbox[1] - WindowTracker.RADIUS:bbox[1] + WindowTracker.RADIUS + bbox[3],
# bbox[0] - WindowTracker.RADIUS:bbox[0] + WindowTracker.RADIUS + bbox[2]]
r = WindowTracker.RADIUS
for x in range(-r, r + 1):
for y in range(-r, r + 1):
current_window = frame_gray[
bbox[1] + y:bbox[1] + bbox[3] + y,
bbox[0] + x:bbox[0] + bbox[2] + x]
if np.size(current_window) != bbox[3] * bbox[2]:
continue
# current_window = current_window.astype(float, copy=True)
full_errors = cv2.subtract(current_window, self.expected)
full_errors = full_errors.reshape(1, np.size(current_window))
error = np.sum(full_errors)
if best_error_value == -1 or best_error_value > error:
best_error_value = error
best_error_location = (x, y)
self.current_bbox = (
self.current_bbox[0] + best_error_location[0],
self.current_bbox[1] + best_error_location[1],
self.current_bbox[2],
self.current_bbox[3]
)
self.expected = frame_gray[bbox[1]:bbox[1] + bbox[3],
bbox[0]:bbox[0] + bbox[2]]
return self.current_bbox