-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch01_introduction.py
255 lines (201 loc) · 7.99 KB
/
ch01_introduction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from __future__ import division
# at this stage in the book we haven't actually installed matplotlib,
# comment this out if you need to
from matplotlib import pyplot as plt
##########################
# #
# FINDING KEY CONNECTORS #
# #
##########################
users = [
{ "id": 0, "name": "Hero" },
{ "id": 1, "name": "Dunn" },
{ "id": 2, "name": "Sue" },
{ "id": 3, "name": "Chi" },
{ "id": 4, "name": "Thor" },
{ "id": 5, "name": "Clive" },
{ "id": 6, "name": "Hicks" },
{ "id": 7, "name": "Devin" },
{ "id": 8, "name": "Kate" },
{ "id": 9, "name": "Klein" },
{ "id": 10, "name": "Jen" }
]
friendships = [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (3, 4),
(4, 5), (5, 6), (5, 7), (6, 8), (7, 8), (8, 9)]
# first give each user an empty list
for user in users:
user["friends"] = []
# and then populate the lists with friendships
for i, j in friendships:
# this works because users[i] is the user whose id is i
users[i]["friends"].append(users[j]) # add i as a friend of j
users[j]["friends"].append(users[i]) # add j as a friend of i
def number_of_friends(user):
"""how many friends does _user_ have?"""
return len(user["friends"]) # length of friend_ids list
total_connections = sum(number_of_friends(user)
for user in users) # 24
num_users = len(users)
avg_connections = total_connections / num_users # 2.4
################################
# #
# DATA SCIENTISTS YOU MAY KNOW #
# #
################################
def friends_of_friend_ids_bad(user):
# "foaf" is short for "friend of a friend"
return [foaf["id"]
for friend in user["friends"] # for each of user's friends
for foaf in friend["friends"]] # get each of _their_ friends
from collections import Counter # not loaded by default
def not_the_same(user, other_user):
"""two users are not the same if they have different ids"""
return user["id"] != other_user["id"]
def not_friends(user, other_user):
"""other_user is not a friend if he's not in user["friends"];
that is, if he's not_the_same as all the people in user["friends"]"""
return all(not_the_same(friend, other_user)
for friend in user["friends"])
def friends_of_friend_ids(user):
return Counter(foaf["id"]
for friend in user["friends"] # for each of my friends
for foaf in friend["friends"] # count *their* friends
if not_the_same(user, foaf) # who aren't me
and not_friends(user, foaf)) # and aren't my friends
print friends_of_friend_ids(users[3]) # Counter({0: 2, 5: 1})
interests = [
(0, "Hadoop"), (0, "Big Data"), (0, "HBase"), (0, "Java"),
(0, "Spark"), (0, "Storm"), (0, "Cassandra"),
(1, "NoSQL"), (1, "MongoDB"), (1, "Cassandra"), (1, "HBase"),
(1, "Postgres"), (2, "Python"), (2, "scikit-learn"), (2, "scipy"),
(2, "numpy"), (2, "statsmodels"), (2, "pandas"), (3, "R"), (3, "Python"),
(3, "statistics"), (3, "regression"), (3, "probability"),
(4, "machine learning"), (4, "regression"), (4, "decision trees"),
(4, "libsvm"), (5, "Python"), (5, "R"), (5, "Java"), (5, "C++"),
(5, "Haskell"), (5, "programming languages"), (6, "statistics"),
(6, "probability"), (6, "mathematics"), (6, "theory"),
(7, "machine learning"), (7, "scikit-learn"), (7, "Mahout"),
(7, "neural networks"), (8, "neural networks"), (8, "deep learning"),
(8, "Big Data"), (8, "artificial intelligence"), (9, "Hadoop"),
(9, "Java"), (9, "MapReduce"), (9, "Big Data")
]
def data_scientists_who_like(target_interest):
return [user_id
for user_id, user_interest in interests
if user_interest == target_interest]
from collections import defaultdict
# keys are interests, values are lists of user_ids with that interest
user_ids_by_interest = defaultdict(list)
for user_id, interest in interests:
user_ids_by_interest[interest].append(user_id)
# keys are user_ids, values are lists of interests for that user_id
interests_by_user_id = defaultdict(list)
for user_id, interest in interests:
interests_by_user_id[user_id].append(interest)
def most_common_interests_with(user_id):
return Counter(interested_user_id
for interest in interests_by_user["user_id"]
for interested_user_id in users_by_interest[interest]
if interested_user_id != user_id)
###########################
# #
# SALARIES AND EXPERIENCE #
# #
###########################
salaries_and_tenures = [(83000, 8.7), (88000, 8.1),
(48000, 0.7), (76000, 6),
(69000, 6.5), (76000, 7.5),
(60000, 2.5), (83000, 10),
(48000, 1.9), (63000, 4.2)]
def make_chart_salaries_by_tenure():
tenures = [tenure for salary, tenure in salaries_and_tenures]
salaries = [salary for salary, tenure in salaries_and_tenures]
plt.scatter(tenures, salaries)
plt.xlabel("Years Experience")
plt.ylabel("Salary")
plt.show()
# keys are years
# values are the salaries for each tenure
salary_by_tenure = defaultdict(list)
for salary, tenure in salaries_and_tenures:
salary_by_tenure[tenure].append(salary)
average_salary_by_tenure = {
tenure : sum(salaries) / len(salaries)
for tenure, salaries in salary_by_tenure.items()
}
def tenure_bucket(tenure):
if tenure < 2: return "less than two"
elif tenure < 5: return "between two and five"
else: return "more than five"
salary_by_tenure_bucket = defaultdict(list)
for salary, tenure in salaries_and_tenures:
bucket = tenure_bucket(tenure)
salary_by_tenure_bucket[bucket].append(salary)
average_salary_by_bucket = {
tenure_bucket : sum(salaries) / len(salaries)
for tenure_bucket, salaries in salary_by_tenure_bucket.iteritems()
}
#################
# #
# PAID_ACCOUNTS #
# #
#################
def predict_paid_or_unpaid(years_experience):
if years_experience < 3.0: return "paid"
elif years_experience < 8.5: return "unpaid"
else: return "paid"
######################
# #
# TOPICS OF INTEREST #
# #
######################
words_and_counts = Counter(word
for user, interest in interests
for word in interest.lower().split())
if __name__ == "__main__":
print
print "######################"
print "#"
print "# FINDING KEY CONNECTORS"
print "#"
print "######################"
print
print "total connections", total_connections
print "number of users", num_users
print "average connections", total_connections / num_users
print
# create a list (user_id, number_of_friends)
num_friends_by_id = [(user["id"], number_of_friends(user))
for user in users]
print "users sorted by number of friends:"
print sorted(num_friends_by_id,
key=lambda (user_id, num_friends): num_friends, # by number of friends
reverse=True) # largest to smallest
print
print "######################"
print "#"
print "# DATA SCIENTISTS YOU MAY KNOW"
print "#"
print "######################"
print
print "friends of friends bad for user 0:", friends_of_friend_ids_bad(users[0])
print "friends of friends for user 3:", friends_of_friend_ids(users[3])
print
print "######################"
print "#"
print "# SALARIES AND TENURES"
print "#"
print "######################"
print
print "average salary by tenure", average_salary_by_tenure
print "average salary by tenure bucket", average_salary_by_bucket
print
print "######################"
print "#"
print "# MOST COMMON WORDS"
print "#"
print "######################"
print
for word, count in words_and_counts.most_common():
if count > 1:
print word, count