-
Notifications
You must be signed in to change notification settings - Fork 0
/
Properties-of-exponents-for-real-numbers.tex
103 lines (87 loc) · 2.41 KB
/
Properties-of-exponents-for-real-numbers.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
\Section{Properties of exponents for real numbers}
In the notation $a^n$, the number $a$ is called the \emph{base}, and the number $n$ is called the \emph{exponent} or \emph{power}.
A whole number exponent $n$ means repeated multiplication:
\begin{equation*}
a^n \text{ means } \overbrace{a \times a \times \cdots \times a}^{\text{multiply $n$ copies of $a$}}
\end{equation*}
The meaning of a fractional exponent $n$ is given in \cref{sec:roots-frac-exp}.
The following properties hold as long as all operations are defined.
\begin{multicols}{2}
\begin{FormulaBox}{Easy cases}
\begin{equation*}
\begin{split}
a^0 &= 1 \text{ provided $a \neq 0$ }
\\
a^1 &= a
\\
a^2 &= a \cdot a
\\
\end{split}
\end{equation*}
\end{FormulaBox}
\begin{FormulaBox}{Powers of $1$}
\begin{equation*}
1^n = 1
\end{equation*}
\end{FormulaBox}
\begin{FormulaBox}{Powers of $0$}
\begin{equation*}
0^n =
\begin{cases}
0 & \text{ if $n > 0$}
\\
\text{undefined} & \text{ if $n \leq 0$ }
\end{cases}
\end{equation*}
\end{FormulaBox}
\begin{FormulaBox}{Sign of odd powers}
If $n$ is \emph{odd}, $a^n$ has the same sign as $a$.
\end{FormulaBox}
\begin{FormulaBox}{Sign of even powers}
If $n$ is \emph{even}, $a^n \geq 0$ no matter what sign $a$ has.
In this case, $a^n = \Abs{a^n} = \Abs{a}^n$.
\end{FormulaBox}
\begin{FormulaBox}{Nested powers}
\begin{equation*}
(a^n)^m = a^{n \cdot m}
\end{equation*}
\end{FormulaBox}
\begin{FormulaBox}{Product with same base}
\begin{equation*}
a^m \cdot a^n = a^{m+n}
\end{equation*}
\end{FormulaBox}
\begin{FormulaBox}{Product with same exponent}
\begin{equation*}
a^n \cdot b^n = (a \cdot b)^n
\end{equation*}
\end{FormulaBox}
\begin{FormulaBox}{Negative exponent}
As long as $a \neq 0$:
\begin{equation*}
\begin{split}
a^{-1} &= \frac{1}{a}
\\
a^{-n} &= \frac{1}{a^n}
\\
\frac{c}{a^n} &= c \cdot a^{-n}
\\
\end{split}
\end{equation*}
\end{FormulaBox}
\begin{FormulaBox}{Quotient with same base}
\begin{equation*}
\frac{a^m}{a^n} = a^m \cdot a^{-n} = a^{m-n}
\end{equation*}
\end{FormulaBox}
\begin{FormulaBox}{Quotient with same exponent}
As long as $b \neq 0$:
\begin{equation*}
\frac{a^n}{b^n} = \pfrac{a}{b}^n
\end{equation*}
\end{FormulaBox}
\end{multicols}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "Business-calculus-workbook"
%%% End: