-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDerivative-practice-chain-rule-Lagrange-notation.tex
80 lines (67 loc) · 1.64 KB
/
Derivative-practice-chain-rule-Lagrange-notation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
\Section{Derivative practice---chain rule, Lagrange notation}
\begin{ProblemSet}[pencil space=2in]
\begin{Problem}[pencil space=1in]
What is $\OuterStyle{v'(u)}$?
\begin{equation*}
\OuterStyle{v(u) = \sqrt{u}}
\end{equation*}
\end{Problem}
\begin{Problem}[pencil space=1in]
What is $\InnerStyle{u'(x)}$?
\begin{equation*}
\InnerStyle{u(x) = 6 x^2 - 4x + 7}
\end{equation*}
\end{Problem}
\begin{Problem}[pencil space=3in]
What is $f'(x)$?
\begin{equation*}
f(x) = \OuterStyle{\sqrt{\InnerStyle{6 x^2 - 4x + 7}}}
\end{equation*}
\end{Problem}
\begin{Problem}
What is $g'(x)$?
\begin{equation*}
g(x) = \OuterStyle{\big(\InnerStyle{3 - 2x + 5x^2}\big)^2}
\end{equation*}
\end{Problem}
\begin{Problem}
What is $f'(x)$?
\begin{equation*}
f(x) = 4 \left(x^2 + 7\right)^5
\end{equation*}
\end{Problem}
\begin{Problem}
What is $f'(x)$?
\begin{equation*}
f(x) = \left(4 x^2 + 7\right)^5
\end{equation*}
\end{Problem}
\begin{Problem}
What is $f'(t)$?
\begin{equation*}
f(t) = \frac{1}{\sqrt{13 t}}
\end{equation*}
\end{Problem}
\begin{Problem}
What is $q'(t)$?
\begin{equation*}
q(t) = \left(t + \frac{3}{t}\right)^{\nicefrac{4}{3}}
\end{equation*}
\end{Problem}
\begin{Problem}
What is $h'(z)$?
\begin{equation*}
h(z) = 16 \left(z^4 - z^5\right)^{-5} - 7 z^{-3}
\end{equation*}
\end{Problem}
% \begin{Problem}
% What is $p'(x)$?
% \begin{equation*}
% p(x) = 10 (3 x + 4)^{\nicefrac{2}{3}} + 8 \sqrt{5 - x^2} + \sqrt{7}
% \end{equation*}
% \end{Problem}
\end{ProblemSet}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "Business-calculus-workbook"
%%% End: