-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathndpt.hpp
848 lines (693 loc) · 23.2 KB
/
ndpt.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
#pragma once
#include <cassert>
#include <cmath>
#include <condition_variable>
#include <algorithm>
#include <atomic>
#include <iomanip>
#include <array>
#include <chrono>
#include <iostream>
#include <mutex>
#include <random>
#include <thread>
#include <vector>
#include <png++/png.hpp>
template <typename S> constexpr S eps = std::numeric_limits<S>::epsilon();
template <typename S, size_t N> class UVec; // unit vector, see below
template <typename S, size_t N> class Body;
template <typename S, size_t N> class Interaction;
template <typename S> class Colour {
public:
S R, G, B;
constexpr Colour(const S R, const S G, const S B) : R(R), G(G), B(B) {}
Colour() : R(0), G(0), B(0) {}
// Adds two colours
inline Colour<S> &operator+=(const Colour<S> &rhs) {
this->R += rhs.R;
this->G += rhs.G;
this->B += rhs.B;
return *this;
}
inline const Colour<S> operator+(const Colour<S> &rhs) const {
return Colour<S>(*this) += rhs;
}
// Substracts colours
inline Colour<S> &operator-=(const Colour<S> &rhs) {
this->R -= rhs.R;
this->G -= rhs.G;
this->B -= rhs.B;
return *this;
}
inline const Colour<S> operator-(const Colour<S> &rhs) const {
return Colour<S>(*this) -= rhs;
}
// Scalar multiplication
inline const Colour<S> operator*=(const S &s) {
this->R *= s;
this->G *= s;
this->B *= s;
return *this;
}
inline const Colour<S> operator*=(const Colour<S> &c) {
this->R *= c.R;
this->G *= c.G;
this->B *= c.B;
return *this;
}
inline const Colour<S> operator*(const S &rhs) const {
return Colour<S>(*this) *= rhs;
}
inline const Colour<S> operator*(const Colour<S> &rhs) const {
return Colour<S>(*this) *= rhs;
}
inline friend const Colour<S> operator*(const S &lhs, const Colour<S> &rhs) {
return Colour<S>(rhs) *= lhs;
}
inline const Colour<S> operator/(const S &rhs) const {
return *this * (1 / rhs);
}
// Supremum norm
inline S supNorm() const {
return std::max(this->R, std::max(this->G, this->B));
}
// Implicit casts
inline operator png::rgb_pixel() const {
return png::rgb_pixel(R * 255, G * 255, B * 255);
}
// Printing Colour
inline friend std::ostream &operator<<(std::ostream &os,
const Colour<S> &col) {
return os << '(' << col.R << ", " << col.G << ", " << col.B << ')';
}
};
template <typename S> constexpr Colour<S> black = Colour<S>(0, 0, 0);
template <typename S> constexpr Colour<S> blue = Colour<S>(0, 0, 1);
template <typename S> constexpr Colour<S> lightBlue = Colour<S>(.5, .5, 1.);
template <typename S> constexpr Colour<S> purple = Colour<S>(.5, 0, .5);
template <typename S> constexpr Colour<S> white = Colour<S>(1, 1, 1);
template <typename S> constexpr Colour<S> red = Colour<S>(1, 0, 0);
template <typename S> constexpr Colour<S> green = Colour<S>(0, 1, 0);
// Represents a vector of N-elements with scalar of type S
template <typename S, size_t N> class Vec {
protected:
// Components of the vector
std::array<S, N> vals;
public:
// Uninitialized vector
Vec<S, N>() {}
// Copy constructor
Vec<S, N>(const Vec<S, N> &other) = default;
// Initializer list constructor
template <typename T> Vec<S, N>(const std::initializer_list<T> &l) {
// For some reason clang doesn't think l.size() is constexpr
// static_assert(l.size() < N, "initializer_list too long");
assert(l.size() <= N);
std::copy(l.begin(), l.end(), this->vals.begin());
std::fill(&this->vals[l.size()], this->vals.end(), 0);
}
// Adds the given vector to this one.
inline Vec<S, N> &operator+=(const Vec<S, N> &rhs) {
for (size_t i = 0; i < N; i++)
this->vals[i] += rhs.vals[i];
return *this;
}
// Adds two vectors
inline const Vec<S, N> operator+(const Vec<S, N> &rhs) const {
return Vec<S, N>(*this) += rhs;
}
// Substracts the given vector from this one.
inline Vec<S, N> &operator-=(const Vec<S, N> &rhs) {
for (size_t i = 0; i < N; i++)
this->vals[i] -= rhs.vals[i];
return *this;
}
// Substracts two vectors
inline const Vec<S, N> operator-(const Vec<S, N> &rhs) const {
return Vec<S, N>(*this) -= rhs;
}
// Inverts vector
inline const Vec<S, N> operator-() const {
Vec<S, N> ret;
for (size_t i = 0; i < N; i++)
ret.vals[i] = -this->vals[i];
return ret;
}
// Scalar multiplication in-place
inline const Vec<S, N> operator*=(const S &s) {
for (size_t i = 0; i < N; i++)
this->vals[i] *= s;
return *this;
}
// Scalar multiplication on the right
inline const Vec<S, N> operator*(const S &rhs) const {
return Vec<S, N>(*this) *= rhs;
}
// Scalar multiplication on the left
inline friend const Vec<S, N> operator*(const S &lhs, const Vec<S, N> &rhs) {
return Vec<S, N>(rhs) *= lhs;
}
// Division scalar multiplication
inline const Vec<S, N> operator/(const S &rhs) const {
return *this * (1 / rhs);
}
// Printing vectors
inline friend std::ostream &operator<<(std::ostream &os,
const Vec<S, N> &vec) {
os << '[';
if (N != 0)
os << vec.vals[0];
for (size_t i = 1; i < N; i++)
os << ' ' << vec.vals[i];
os << ']';
return os;
}
// Pointwise product of vectors
inline friend Vec<S, N> pwProd(const Vec<S, N> &v, const Vec<S, N> &w) {
Vec<S, N> ret;
for (size_t i = 0; i < N; i++)
ret.vals[i] = v.vals[i] * w.vals[i];
return ret;
}
// Compute inner product
inline S dot(const Vec<S, N> &other) const {
S ret = 0;
for (int i = 0; i < N; i++)
ret += this->vals[i] * other.vals[i];
return ret;
}
// Length of vector
inline S length() const { return std::sqrt(this->dot(*this)); }
// Subscript operator
inline S &operator[](const size_t i) { return vals[i]; }
const UVec<S, N> normalize() const;
};
// Represents a unit-vector vector of N-elements with scalar of type S
template <typename S, size_t N> class UVec {
Vec<S, N> v;
UVec<S, N>() {}
public:
// Create a unit vector by normalizing a regular vector
inline static const UVec<S, N> normalize(const Vec<S, N> &v) {
UVec<S, N> ret;
ret.v = v / v.length();
return ret;
}
// Reflect this vector over the given normal
inline UVec<S, N> reflect(const UVec<S, N> &normal) const {
return (*this - normal * (2 * this->dot(normal))).normalize();
}
// Cast to vector
inline operator Vec<S, N>() const { return this->v; }
// Implicit casts and templates don't combine well, so we have to add
// quite some boilerplate to make the compiler understand uv1 + uv2
// actually means (vec)uv1 + (vec)uv2.
inline S dot(const Vec<S, N> &other) const {
return static_cast<Vec<S, N>>(*this).dot(other);
}
inline const Vec<S, N> operator*(const S &rhs) const {
return Vec<S, N>(*this) *= rhs;
}
inline const Vec<S, N> operator/(const S &rhs) const {
return static_cast<Vec<S, N>>(*this) / rhs;
}
inline const Vec<S, N> operator-(const Vec<S, N> &rhs) const {
return static_cast<Vec<S, N>>(*this) - rhs;
}
inline const Vec<S, N> operator-(const UVec<S, N> &rhs) const {
return *this - static_cast<Vec<S, N>>(rhs);
}
inline const Vec<S, N> operator-() const {
return -static_cast<Vec<S, N>>(*this);
}
inline const Vec<S, N> operator+(const Vec<S, N> &rhs) const {
return static_cast<Vec<S, N>>(*this) + rhs;
}
inline const Vec<S, N> operator+(const UVec<S, N> &rhs) const {
return *this + static_cast<Vec<S, N>>(rhs);
}
inline friend std::ostream &operator<<(std::ostream &os,
const UVec<S, N> &v) {
return os << static_cast<Vec<S, N>>(v);
}
};
// Normalize vector
template <typename S, size_t N>
inline const UVec<S, N> Vec<S, N>::normalize() const {
return UVec<S, N>::normalize(*this);
}
// Represents a ray
template <typename S, size_t N> class Ray {
public:
Vec<S, N> orig; // origin of the ray
UVec<S, N> dir; // direction of the ray
Ray<S, N>() : dir(Vec<S, N>{1}.normalize()) {}
Ray<S, N>(const Vec<S, N> &orig, const UVec<S, N> &dir)
: orig(orig), dir(dir) {}
// Printing ray
inline friend std::ostream &operator<<(std::ostream &os, const Ray<S, N> &r) {
return os << "<Ray " << r.orig << " " << r.dir << ">";
}
// Returns the length of the vector v projected onto the line associated
// to the ray.
inline S relativeLength(const Vec<S, N> &v) const {
return this->dir.dot(v - this->orig);
}
// Returns whether the given vector is in view of the ray.
inline bool inView(const Vec<S, N> &v) const {
return this->relativeLength(v) >= 0;
}
// Project the vector v onto the line associated to the ray.
inline Vec<S, N> project(const Vec<S, N> &v) const {
return this->follow(this->relativeLength(v));
}
// Return the vector by following the ray for the given distance
inline Vec<S, N> follow(S distance) const {
return this->orig + (this->dir * distance);
}
};
// Represents a 2-dimensional camera
template <typename S, size_t N> class Camera {
public:
Camera(const Vec<S, N> &origin, const Vec<S, N> ¢re,
const Vec<S, N> &down, const Vec<S, N> &right, unsigned int hRes,
unsigned int vRes)
: origin(origin), centre(centre), down(down), right(right), hRes(hRes),
vRes(vRes) {}
Vec<S, N> origin;
Vec<S, N> centre;
Vec<S, N> down;
Vec<S, N> right;
unsigned int hRes;
unsigned int vRes;
int hOffset;
};
// The result of a ray hitting a body
template <typename S, size_t N> class Hit {
public:
Hit(Ray<S, N> ray) : ray(std::move(ray)) {}
Ray<S, N> ray;
S distance;
const Body<S, N> *body;
Vec<S, N> intercept;
};
// A body
template <typename S, size_t N> class Body {
public:
// Returns whether the given ray hits the body. If so, it fills out the
// details in the hit structure.
virtual bool intersect(const Ray<S, N> &ray, Hit<S, N> &hit) const = 0;
virtual Interaction<S, N> next(const Hit<S, N> &hit) const = 0;
};
// Represents an interaction with a ray and an object: a convex combination
//
// lambda |ray> + (1 - lambda) |colour>,
//
// where ray represents the reflected/refracted/etc ray and colour the
// "absorbed" part.
template <typename S, size_t N> class Interaction {
public:
Interaction(Colour<S> colour) : lambda(0), colour(std::move(colour)), ray() {}
Interaction(Ray<S, N> ray) : lambda(1), colour(), ray(std::move(ray)) {}
Interaction(S lambda, Ray<S, N> ray, Colour<S> colour)
: lambda(lambda), colour(std::move(colour)), ray(std::move(ray)) {}
S lambda;
Colour<S> colour;
Ray<S, N> ray;
};
// A scene
template <typename S, size_t N> class Scene final : public Body<S, N> {
public:
std::vector<const Body<S, N> *> bodies;
Scene<S, N>() : bodies{} {}
Scene<S, N>(const std::initializer_list<const Body<S, N> *> &l) : bodies(l) {}
bool intersect(const Ray<S, N> &ray, Hit<S, N> &minDistHit) const override {
S minDist = std::numeric_limits<S>::infinity();
Hit<S, N> hit(ray);
bool ok = false;
for (const Body<S, N> *body : bodies) {
if (!body->intersect(ray, hit))
continue;
if (hit.distance < minDist && hit.distance > eps<S>) {
minDist = hit.distance;
minDistHit = hit;
ok = true;
}
}
return ok;
}
Interaction<S, N> next(const Hit<S, N> &hit) const override { assert(0); }
};
// A reflective bowl
template <typename S, size_t N>
class ReflectiveBowl final : public Body<S, N> {
public:
Vec<S, N> centre;
Vec<S, N> north;
S radius;
Colour<S> shade;
ReflectiveBowl(Vec<S, N> centre, S radius, Vec<S, N> north, Colour<S> shade)
: centre(std::move(centre)),
north(std::move(north)),
radius(radius),
shade(std::move(shade)) {}
bool intersect(const Ray<S, N> &ray, Hit<S, N> &hit) const override {
Vec<S, N> projCentre = ray.project(centre);
if (!ray.inView(projCentre))
return false;
hit.body = this;
Vec<S, N> aVec = projCentre - centre;
S a = aVec.length();
if (a >= radius)
return false;
S b = std::sqrt(radius * radius - a * a);
hit.distance = (projCentre - ray.orig).length() - b;
hit.intercept = hit.ray.follow(hit.distance);
if ((hit.intercept - centre).dot(north) < 0 && hit.distance > 0.001)
return true;
hit.distance += 2*b;
hit.intercept = hit.ray.follow(hit.distance);
if ((hit.intercept - centre).dot(north) < 0 && hit.distance > 0.001)
return true;
return false;
}
Interaction<S, N> next(const Hit<S, N> &hit) const override {
auto&& normal = (centre - hit.intercept).normalize();
auto&& dir = hit.ray.dir.reflect(normal);
auto ray = Ray<S,N>(hit.intercept, dir);
if (ray.inView(ray.project(centre))) {
// Internal reflection, color it.
return Interaction<S, N>(0.8, std::move(ray), shade);
} else {
return Interaction<S, N>(std::move(ray));
}
}
};
// A refracting sphere
template <typename S, size_t N>
class RefractingSphere final : public Body<S, N> {
public:
Vec<S, N> centre;
S radius;
RefractingSphere(Vec<S, N> centre, S radius)
: centre(std::move(centre)), radius(radius) {}
bool intersect(const Ray<S, N> &ray, Hit<S, N> &hit) const override {
Vec<S, N> projCentre = ray.project(centre);
if (!ray.inView(projCentre))
return false;
hit.body = this;
Vec<S, N> aVec = projCentre - centre;
S a = aVec.length();
if (a > radius)
return false;
S b = std::sqrt(radius * radius - a * a);
hit.distance = (projCentre - ray.orig).length() - b;
hit.intercept = hit.ray.follow(hit.distance);
if (hit.distance > 0.001)
return true;
hit.distance += 2*b;
hit.intercept = hit.ray.follow(hit.distance);
if (hit.distance > 0.001)
return true;
return false;
}
Interaction<S, N> next(const Hit<S, N> &hit) const override {
UVec<S, N> normal = (centre - hit.intercept).normalize();
S mu = 1.33;
if (normal.dot(hit.ray.dir) > 0) {
mu = 1. / mu;
} else {
normal = (-normal).normalize();
}
auto ni = normal.dot(hit.ray.dir);
auto dir = ((hit.ray.dir - normal * ni) * mu
+ normal * std::sqrt(1. - (1. - ni*ni) *mu*mu)).normalize();
//return Interaction<S, N>(Ray<S, N>(hit.intercept, dir));
return Interaction<S,N>(Ray<S,N>(hit.intercept, dir));
}
};
// A reflective sphere
template <typename S, size_t N>
class ReflectiveSphere final : public Body<S, N> {
public:
Vec<S, N> centre;
S radius;
ReflectiveSphere(Vec<S, N> centre, S radius)
: centre(std::move(centre)), radius(radius) {}
bool intersect(const Ray<S, N> &ray, Hit<S, N> &hit) const override {
Vec<S, N> projCentre = ray.project(centre);
if (!ray.inView(projCentre))
return false;
hit.body = this;
Vec<S, N> aVec = projCentre - centre;
S a = aVec.length();
if (a >= radius)
return false;
S b = std::sqrt(radius * radius - a * a);
hit.distance = (projCentre - ray.orig).length() - b;
hit.intercept = hit.ray.follow(hit.distance);
return true;
}
Interaction<S, N> next(const Hit<S, N> &hit) const override {
UVec<S, N> normal = (centre - hit.intercept).normalize();
UVec<S, N> dir = hit.ray.dir.reflect(normal);
return Interaction<S, N>(Ray<S, N>(hit.intercept, dir));
}
};
// Hyper-checkerboard
template <typename S, size_t N>
class HyperCheckerboard final : public Body<S, N> {
Ray<S, N> normal;
std::array<Vec<S, N>, N> axes;
std::array<Ray<S, N>, N> axisRays;
S boundary;
std::array<S, N> axisLengths;
public:
HyperCheckerboard(const Ray<S, N> &normal,
const std::array<Vec<S, N>, N> &axes,
S boundary=17)
: normal(normal), axes(axes), boundary(boundary) {
for (size_t i = 0; i < N; i++) {
axisRays[i] = Ray<S, N>(normal.orig, axes[i].normalize());
axisLengths[i] = axes[i].length();
}
}
bool intersect(const Ray<S, N> &ray, Hit<S, N> &hit) const override {
hit.body = this;
S offset = normal.relativeLength(ray.orig);
S dir = normal.dir.dot(ray.dir);
if (std::fabs(dir) <= eps<S>)
return false;
hit.distance = -offset / dir;
if (hit.distance < 0)
return false;
hit.intercept = ray.follow(hit.distance);
if (this->boundary > 0)
if (hit.intercept.length() > this->boundary)
return false;
return true;
}
Interaction<S, N> next(const Hit<S, N> &hit) const override {
int sum = 0;
Colour<S> colour;
for (size_t i = 0; i < N; i++) {
auto t = axisRays[i].relativeLength(hit.intercept) / axisLengths[i];
sum += (int)std::fabs(std::floor(t));
}
return Interaction<S, N>(
0.2, Ray<S, N>(hit.intercept, hit.ray.dir.reflect(normal.dir)),
sum % 2 ? lightBlue<S> : white<S>);
}
};
template <typename S> class PNGScreen {
public:
png::image<png::rgb_pixel> png;
PNGScreen(size_t hRes, size_t vRes) : png(hRes, vRes) {}
inline void put(size_t x, size_t y, const Colour<S> &colour) {
png[x][y] = colour;
}
};
template <typename S, size_t N, typename SCREEN, typename RND = std::mt19937>
class Sampler {
struct Job {
const size_t start;
const size_t end;
std::vector<Colour<S>> result;
Job(size_t start, size_t end) : start(start), end(end) {
result.reserve(end - start);
}
};
const Body<S, N> &root;
const Camera<S, N> &camera;
SCREEN &screen;
int maxBounces;
mutable std::atomic<int> nMaxBouncesHit;
mutable std::atomic<int> nPixelsDone;
mutable std::atomic<int> nRaysCast;
S target;
S target2;
unsigned minimalRayCount;
size_t pixelsPerJob;
// done is set to true if the last job has been handed out (but this one
// and the previous few might not have completed yet).
bool done = false;
std::condition_variable doneCV;
std::mutex lock;
std::vector<std::unique_ptr<std::thread>> workers;
std::vector<Job> jobs;
size_t nextJob;
public:
size_t nWorkers = 0;
Sampler(const Body<S, N> &root, const Camera<S, N> &camera, SCREEN &screen,
S target=0.005, unsigned minimalRayCount=10)
: root(root), camera(camera), screen(screen), maxBounces(20),
target(target), target2(target*target),
minimalRayCount(minimalRayCount),
pixelsPerJob(500) {}
// Shoots the scene with the camera provided and writes out to the screen.
// Can be called only once.
void shoot() {
{
std::unique_lock<std::mutex> g(lock);
// Start threads
if (nWorkers == 0)
nWorkers = std::thread::hardware_concurrency();
workers.reserve(nWorkers);
for (size_t i = 0; i < nWorkers; i++)
workers.push_back(
std::make_unique<std::thread>(&Sampler::workerEntry, this));
// Create jobs. Thread will be waiting on lock until we release it.
size_t nPixels = camera.vRes * camera.hRes;
for (size_t job = 0; job < nPixels; job += pixelsPerJob)
jobs.emplace_back(job, std::min(job + pixelsPerJob, nPixels));
nextJob = 0;
}
int jobsWidth = static_cast<int>(std::ceil(std::log10(jobs.size())) + 1);
int pointsWidth = static_cast<int>(std::ceil(std::log10(
camera.hRes * camera.vRes)) + 1);
{
std::unique_lock<std::mutex> g(lock);
while (!done) {
if (doneCV.wait_for(g, std::chrono::milliseconds(500))
== std::cv_status::no_timeout)
break;
std::cerr
<< std::setprecision(0) << std::fixed << std::setw(3)
<< static_cast<double>(nextJob) /
static_cast<double>(jobs.size()) * 100 << "% "
<< std::setw(jobsWidth) << nextJob << "/" << jobs.size() << " "
<< std::setw(pointsWidth) << nMaxBouncesHit << " diverged"
<< std::setprecision(1) << std::fixed << std::setw(8);
int nPixelsDoneCopy = nPixelsDone;
int nRaysCastCopy = nRaysCast;
nPixelsDone = 0;
nRaysCast = 0;
if (nPixelsDoneCopy > 0)
std::cerr << static_cast<double>(nRaysCastCopy) /
static_cast<double>(nPixelsDoneCopy) << " rays/px";
std::cerr
<< std::setw(6) << std::setprecision(1) << std::fixed
<< static_cast<double>(nPixelsDoneCopy) / 500. << "kpx/s\r";
}
}
for (auto &thread : workers)
thread->join(); // wait for the last jobs to be finished
std::cerr << "\nWriting to PNG ...\n";
for (auto &job : jobs) {
size_t j = 0;
for (size_t i = job.start; i < job.end; i++, j++) {
size_t x = i % camera.vRes; // TODO optimize?
size_t y = i / camera.vRes;
screen.put(x, y, job.result[j]);
}
}
}
private:
void workerEntry() {
RND rnd;
while (true) {
size_t ourJob;
bool wakeMainThread = false;
{ // get next job
std::unique_lock<std::mutex> g(lock);
if (done)
break;
ourJob = nextJob++;
if (nextJob == jobs.size()) {
wakeMainThread = true;
done = true;
}
}
if (wakeMainThread)
doneCV.notify_all();
Job &job = jobs[ourJob];
int nTotalRaysCast = 0;
int nRaysCastInJob = 0;
for (size_t i = job.start; i < job.end; i++) {
size_t x = i % camera.vRes; // TODO optimize?
size_t y = i / camera.vRes;
Vec<S, N> down(camera.down
* (2 * static_cast<S>(x) - camera.vRes) / 2);
Vec<S, N> right(camera.right
* (2 * static_cast<S>(y - camera.hOffset) - camera.hRes) / 2);
Ray<S, N> ray(camera.origin,
(down + right + camera.centre).normalize());
Colour<S> c(sample(ray, camera.right, camera.down, rnd, nRaysCastInJob));
job.result.push_back(c);
nTotalRaysCast += nRaysCastInJob;
}
nRaysCast += nTotalRaysCast;
nPixelsDone += job.end - job.start;
}
}
inline Colour<S> sampleOne(const Ray<S, N> &r, const Vec<S, N> &dx,
const Vec<S, N> &dy, RND &rnd) const {
std::uniform_real_distribution<S> rnd01(0, 1);
Vec<S, N> jitter(dx * rnd01(rnd) + dy * rnd01(rnd));
Ray<S, N> cRay(r.orig, (r.dir + jitter).normalize());
S factor = 1;
Colour<S> ret;
for (int i = 0; i < maxBounces; i++) {
Hit<S, N> hit(cRay);
if (!root.intersect(cRay, hit))
return ret + factor * white<S>;
// return ret;
Interaction<S, N> intr = hit.body->next(hit);
if (intr.lambda == 0)
return ret + intr.colour * factor;
ret += intr.colour * factor * (1 - intr.lambda);
factor *= intr.lambda;
if (factor < this->target)
return ret;
cRay = intr.ray;
}
// max bounces hit.
nMaxBouncesHit++;
return ret;
}
inline Colour<S> sample(const Ray<S, N> &ray, const Vec<S, N> &dx,
const Vec<S, N> &dy, RND &rnd,
int& nRaysCastOut) const {
Colour<S> estMean = sampleOne(ray, dx, dy, rnd);
Colour<S> estMoment;
unsigned int oldK = 0;
unsigned int k = 1; // sample count
Colour<S> sample;
Colour<S> distOldMean;
Colour<S> distNewMean;
for (;;) {
oldK = k++;
sample = sampleOne(ray, dx, dy, rnd);
distOldMean = sample - estMean;
estMean += distOldMean / k;
distNewMean = sample - estMean;
estMoment += distOldMean * distNewMean;
if (k > this->minimalRayCount
&& estMoment.supNorm() <= oldK * k * this->target2) {
nRaysCastOut = k;
return estMean;
}
}
}
};
// vim: ts=2 sw=2