-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathload.py
46 lines (39 loc) · 1.39 KB
/
load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import torch
import pickle
import datasets
from transformer_lens import HookedTransformer, utils
from config import FeatureDatasetConfig
def load_model(model_name="gpt2-small", device=None):
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
if model_name.startswith('pythia'):
try:
model = HookedTransformer.from_pretrained(
model_name + '-70m', device='cpu')
except ValueError:
print(f'No {model_name}-v0 available')
model = HookedTransformer.from_pretrained(model_name, device='cpu')
model.eval()
torch.set_grad_enabled(False)
if model.cfg.device != device:
try:
model.to(device)
except RuntimeError:
print(
f"WARNING: model is too large to fit on {device}. Falling back to CPU")
model.to('cpu')
return model
def load_feature_dataset(name, n=-1):
path = os.path.join(os.environ.get(
'FEATURE_DATASET_DIR', 'feature_datasets'), name)
if n > 0:
return datasets.load_from_disk(path).select(range(n))
else:
return datasets.load_from_disk(path)
def load_raw_dataset(path, n_seqs=-1):
save_path = os.path.join(os.environ['HF_DATASETS_CACHE'], path)
dataset = datasets.load_from_disk(save_path)
if n_seqs > 0:
dataset = dataset.select(range(n_seqs))
return dataset