-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_pose.py
301 lines (239 loc) · 10.1 KB
/
train_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import os
import cv2
import logging
import argparse
import numpy as np
import seaborn as sns
from PIL import Image
from tqdm import tqdm
from collections import defaultdict
import torch
import torch.utils.data
import torch.optim as optim
import torch.nn.functional as F
import torch.nn as nn
from configs import make_cfg
from dataset.train import Dataset as NovelViewDataset
from models.model import Model
from utils.train_util import cpu_data_to_gpu
from utils.image_util import to_8b_image
from utils.body_util import body_pose_to_body_RTs_tensor
from utils.tb_util import TBLogger
from utils.lpips import LPIPS
from pytorch3d.loss import (
chamfer_distance,
mesh_edge_loss,
mesh_normal_consistency,
)
from eval import Evaluator_snapshot as Evaluator
EXCLUDE_KEYS_TO_GPU = ['frame_name', 'img_width', 'img_height']
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--cfg",
default=None,
type=str
)
parser.add_argument(
"--resume",
action="store_true",
)
return parser.parse_args()
def unpack(rgbs, masks, bgcolors):
rgbs = rgbs * masks.unsqueeze(-1) + bgcolors[:, None, None, :] * (1 - masks).unsqueeze(-1)
return rgbs
def evaluate(cfg, Rhs, Ths, dst_posevecs, dataloader, model, tb, split, random_bgcolor=False, n_iters=1e7):
save_dir = os.path.join(cfg.save_dir, 'eval', 'test_refine')
os.makedirs(save_dir, exist_ok=True)
model.eval()
evaluator = Evaluator()
if random_bgcolor:
bgcolor = torch.tensor(dataloader.dataset.bgcolor).float() / 255.
for batch_idx, batch in tqdm(enumerate(dataloader)):
data = cpu_data_to_gpu(
batch, exclude_keys=EXCLUDE_KEYS_TO_GPU)
with torch.no_grad():
new_data = update_data(data, dst_posevecs[batch_idx])
pred, mask, _ = model(
new_data['K'], new_data['E'],
new_data['cnl_gtfms'], new_data['dst_Rs'], new_data['dst_Ts'],
dst_posevec=new_data['dst_posevec'], i_iter=n_iters,
global_R=Rhs[batch_idx], global_T=Ths[batch_idx])
truth_imgs = data['target_rgbs'].detach().cpu().numpy()
if random_bgcolor:
pred = unpack(pred, mask, bgcolor[None, :].to(pred.device).repeat(pred.shape[0], 1))
pred_imgs = pred.detach().cpu().numpy()
for i, (frame_name, pred_img) in enumerate(zip(batch['frame_name'], pred_imgs)):
pred_img = to_8b_image(pred_img)
truth_img = to_8b_image(truth_imgs[i])
evaluator.evaluate(pred_img / 255., truth_img / 255.)
Image.fromarray(truth_img).save(os.path.join(save_dir, frame_name + '_gt.png'))
Image.fromarray(pred_img).save(os.path.join(save_dir, frame_name + '.png'))
psnr = np.mean(evaluator.psnr)
ssim = np.mean(evaluator.ssim)
lpips = np.mean(evaluator.lpips)
logging.info(f'evaluate on {split}: psnr - {psnr:.02f}, ssim - {ssim:.04f}, lpips - {lpips:.04f}')
if tb is not None:
tb.summ_scalar(f'{split}/psnr', psnr)
tb.summ_scalar(f'{split}/ssim', ssim)
tb.summ_scalar(f'{split}/lpips', lpips)
model.train()
def update_data(data, dst_posevec):
new_data = {key: value.detach().clone() for key, value in data.items()}
dst_tpose_joints = new_data['dst_tpose_joints'][0]
new_data['dst_Rs'], new_data['dst_Ts'] = body_pose_to_body_RTs_tensor(dst_posevec, dst_tpose_joints)
new_data['dst_Rs'], new_data['dst_Ts'] = new_data['dst_Rs'][None], new_data['dst_Ts'][None]
new_data['dst_posevec'] = (dst_posevec[3:] + 1e-2)[None]
return new_data
def compute_loss(rgb_pred, mask_pred, outputs, rgb_gt, mask_gt, loss_cfg, data, i_iter, tb=None, **kwargs):
losses = {}
loss_rgb = torch.mean(torch.abs(rgb_pred - rgb_gt))
losses['rgb'] = {
'unscaled': loss_rgb,
'scaled': loss_rgb * loss_cfg.rgb.coeff
}
loss_mask = torch.mean(torch.abs(mask_pred - mask_gt))
losses['mask'] = {
'unscaled': loss_mask,
'scaled': loss_mask * loss_cfg.mask.coeff
}
if loss_cfg.lpips.coeff > 0:
scale_for_lpips = lambda x: 2 * x - 1
loss_lpips = torch.mean(kwargs['lpips_func'](
scale_for_lpips(rgb_pred.permute(0, 3, 1, 2)),
scale_for_lpips(rgb_gt.permute(0, 3, 1, 2))
))
losses["lpips"] = {
'unscaled': loss_lpips,
'scaled': loss_lpips * loss_cfg.lpips.coeff
}
total_loss = sum([item['scaled'] for item in losses.values()])
return total_loss, losses
def main(args):
cfg = make_cfg(args.cfg)
os.makedirs(cfg.save_dir, exist_ok=True)
# setup logger
logging_path = os.path.join(cfg.save_dir, 'log_pose.txt')
logging.basicConfig(
handlers=[
logging.FileHandler(logging_path),
logging.StreamHandler()
],
format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO
)
# save config file
os.makedirs(os.path.join(cfg.save_dir), exist_ok=True)
with open(os.path.join(cfg.save_dir, 'config.yaml'), 'w') as f:
f.write(cfg.dump())
logging.info(f'configs: \n{cfg.dump()}')
# load test data of people snapshot
assert cfg.dataset.test_view.name == 'snapshot'
from dataset.train import Dataset as NovelViewDataset
test_dataset = NovelViewDataset(
cfg.dataset.test_view.dataset_path,
bgcolor=cfg.bgcolor,
skip=cfg.dataset.test_view.skip,
target_size=cfg.model.img_size,
)
test_dataloader = torch.utils.data.DataLoader(
batch_size=cfg.dataset.test_view.batch_size,
dataset=test_dataset,
shuffle=False,
drop_last=False,
num_workers=cfg.dataset.test_view.num_workers)
# load the model
model = Model(cfg.model, test_dataset.get_canonical_info())
if len(cfg.model.subdivide_iters) > 0:
for _ in range(len(cfg.model.subdivide_iters)):
model.subdivide(need_face_connectivity=False)
# load checkpoints
ckpt_dir = os.path.join(cfg.save_dir, 'checkpoints')
max_iter = max(
[int(filename.split('_')[-1][:-3]) for filename in os.listdir(ckpt_dir) if 'pose' not in filename])
ckpt_path = os.path.join(ckpt_dir, f'iter_{max_iter}.pt')
logging.info(f'loading model from {ckpt_path}')
ckpt = torch.load(ckpt_path)
model.load_state_dict(ckpt['network'], strict=False)
model.cuda()
# freeze the network
model.eval()
for param in model.parameters():
param.requires_grad = False
# prepare the loss
loss_funcs = {}
if hasattr(cfg.train.losses, 'lpips'):
loss_funcs['lpips_func'] = LPIPS(net='vgg')
for param in loss_funcs['lpips_func'].parameters():
param.requires_grad = False
loss_funcs['lpips_func'].cuda()
# variables to save results
Rhs = torch.zeros([len(test_dataset), 3], device='cuda').float()
Ths = torch.zeros([len(test_dataset), 3], device='cuda').float()
dst_posevecs = torch.zeros([len(test_dataset), 24 * 3], device='cuda').float()
dst_posevecs_raw = torch.zeros([len(test_dataset), 24 * 3], device='cuda').float()
for batch_idx, batch in enumerate(test_dataloader):
dst_posevecs_raw[batch_idx] = batch['dst_poses'].cuda()
evaluate(cfg, Rhs, Ths, dst_posevecs_raw, test_dataloader, model, None, 'test', cfg.random_bgcolor, 1e7)
for batch_idx, batch in enumerate(test_dataloader):
loss_best = 1e10
print('batch_idx: ' + str(batch_idx))
Rh = torch.zeros([3], requires_grad=True, device='cuda')
Th = torch.zeros([3], requires_grad=True, device='cuda')
dst_posevec = torch.tensor(batch['dst_poses'][0], requires_grad=True, device='cuda')
param_groups = [Rh, Th, dst_posevec]
optimizer = optim.Adam(param_groups, lr=cfg.pose.lr)
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=cfg.pose.decay, gamma=0.5
)
data = cpu_data_to_gpu(batch, exclude_keys=EXCLUDE_KEYS_TO_GPU)
for _ in range(cfg.pose.iters):
optimizer.zero_grad()
new_data = update_data(data, dst_posevec)
rgb, mask, outputs = model(
new_data['K'], new_data['E'],
new_data['cnl_gtfms'], new_data['dst_Rs'], new_data['dst_Ts'],
dst_posevec=new_data['dst_posevec'],
canonical_joints=new_data['dst_tpose_joints'],
global_R=Rh, global_T=Th,
i_iter=1e7,
bgcolor=new_data['bgcolor'])
rgb = unpack(rgb, mask, new_data['bgcolor'])
loss, loss_items = compute_loss(
rgb, mask, outputs,
new_data['target_rgbs'], new_data['target_masks'],
cfg.train.losses,
new_data,
i_iter=1e7,
tb=None,
**loss_funcs
)
loss.backward()
optimizer.step()
scheduler.step()
if loss.item() < loss_best:
# logging.info('update: {:.4f} -> {:.4f}'.format(loss_best, loss.item()))
loss_best = loss.item()
Rhs[batch_idx] = Rh.detach()
Ths[batch_idx] = Th.detach()
dst_posevecs[batch_idx] = dst_posevec.detach()
if _ % 10 == 0:
loss_str = f"iter {_} - loss: {loss.item():.4f} ("
for loss_name, loss_value in loss_items.items():
loss_str += f"{loss_name}: {loss_value['scaled'].item():.4f}, "
loss_str = loss_str[:-2] + ")"
logging.info(loss_str)
print(Rh, Th)
evaluate(cfg, torch.zeros_like(Rhs), torch.zeros_like(Ths), dst_posevecs_raw, test_dataloader, model, None, 'test', cfg.random_bgcolor,
1e7)
evaluate(cfg, Rhs, Ths, dst_posevecs, test_dataloader, model, None, 'test', cfg.random_bgcolor, 1e7)
ckpt_path = os.path.join(cfg.save_dir, 'checkpoints', f'pose.pt')
torch.save({
'Rhs': Rhs,
'Ths': Ths,
'dst_poses': dst_posevecs,
}, ckpt_path)
logging.info(f'saved to {ckpt_path}')
if __name__ == "__main__":
args = parse_args()
main(args)