-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_poseseg.py
95 lines (73 loc) · 3.05 KB
/
eval_poseseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from pickle import load
import sys
from torch._C import set_flush_denormal
from utils.imutils import vis_img
import torch
import os
from cmd_parser import parse_config
from modules import init, DatasetLoader, ModelLoader
from process import EvalPoseSeg
from utils.eval_utils import HumanEval
from utils.coco import CocoDataset
from pycocotools.cocoeval import COCOeval
###########global parameters#########
sys.argv = ['','--config=cfg_files\\eval_poseseg.yaml']
def main(**args):
# global setting
dtype = torch.float32
batchsize = args.get('batchsize')
workers = args.get('worker')
device = torch.device(index=args.get('gpu_index'),type='cuda')
viz = args.get('viz')
# init project setting
out_dir, logger, smpl, generator, occlusions = init(dtype=dtype, **args)
# load model
model = ModelLoader(device=device, output=out_dir, smpl=smpl, generator=generator, **args)
# create data loader
dataset = DatasetLoader(smpl_model=smpl, generator=generator,
occlusions=occlusions, **args)
eval_dataset = dataset.load_evalset()
for i, (name, dataset) in enumerate(zip(dataset.testset, eval_dataset)):
eval_loader = torch.utils.data.DataLoader(
dataset,
batch_size=batchsize, shuffle=False,
num_workers=workers, pin_memory=True, drop_last=True
)
evaltool = HumanEval(name, generator=generator, smpl=smpl, dtype=dtype, **args)
seg_results, alpha_mpjpe, pred_mpjpe = EvalPoseSeg(model, evaltool, eval_loader, viz=viz, device=device)
logger.append([name, alpha_mpjpe, pred_mpjpe, 0, 0, 0, 0])
if name == 'COCO2017':
import pickle
def save_pkl(path, result):
""""
save pkl file
"""
folder = os.path.dirname(path)
if not os.path.exists(folder):
os.makedirs(folder)
with open(path, 'wb') as result_file:
pickle.dump(result, result_file, protocol=2)
save_pkl(os.path.join(out_dir, 'COCO2017val_results.pkl'), seg_results)
def load_pkl(path):
""""
load pkl file
"""
param = pickle.load(open(path, 'rb'),encoding='iso-8859-1')
return param
# seg_results = load_pkl('COCO2017val_results.pkl')
dataset_val = CocoDataset()
coco = dataset_val.load_coco('E:/HumanData-Source/COCO2017', "val", year=2017, return_coco=True)
dataset_val.prepare()
coco_results = coco.loadRes(seg_results)
# Evaluate
cocoEval = COCOeval(coco, coco_results, 'segm')
cocoEval.params.catIds = [1]
# cocoEval.params.imgIds = coco_image_ids
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
print('AlphaPose Error: %.02f Pred Error: %.02f' %(alpha_mpjpe, pred_mpjpe))
logger.close()
if __name__ == "__main__":
args = parse_config()
main(**args)