-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_benchmark.py
218 lines (203 loc) · 7.53 KB
/
run_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"Runs model comparison"
from benchmark import visualization
from benchmark import get_cath
from pathlib import Path
import click
import os
import sys
def check_sets(dataset: Path, training_set: Path):
"""Compares training and testing sets, warns if they overlap.
Parameters
----------
dataset:Path
Path to .txt file with the dataset.
training_set:Path
Path to a file with the training set, can be PISCES, pdb code or pdb+chain.
"""
with open(training_set) as file:
training_chains = [x.split()[0][:4].upper() for x in file.readlines()]
# check for pisces
if len(training_chains[0]) != 5:
training_chains = training_chains[1:]
# check only pdb codes, not chains
with open(dataset) as file:
testing_chains = [x.split()[0][:4].upper() for x in file.readlines()]
repeated_chains = set(testing_chains).intersection(set(training_chains))
if len(repeated_chains) > 0:
print(f"{len(repeated_chains)} chains are in both sets:")
for chain in repeated_chains:
print(chain)
print("\n")
print("Suggested benchmarking set:")
for chain in testing_chains:
if chain not in repeated_chains:
print(chain)
if click.confirm(
"Model evaluation might not be valid. Do you want to continue?"
):
click.echo("Continuing!")
else:
exit()
else:
print("There is no overlap between sets.")
@click.command("compare")
@click.option(
"--dataset",
help="Path to .txt file with dataset list (PDB+chain, e.g., 1a2bA).",
type=click.Path(exists=True),
required=True,
)
@click.option(
"--training_set",
default=False,
help="Path to .txt file with the training set.",
)
@click.option(
"--path_to_pdb",
help="Path to the directory with PDB files.",
type=click.Path(exists=True),
required=True,
)
@click.option(
"--path_to_models",
help="Path to the directory with .csv prediction files.",
type=click.Path(exists=True),
required=True,
)
@click.option(
"--include",
help="Path to .txt file with a list of models to be included in comparison. If not provided, 8 models with the best accuracy are compared.",
type=click.Path(exists=True),
)
@click.option(
"--torsions",
is_flag=True,
help="Produces predicted and true Ramachandran plots for each model.",
)
def compare_models(
dataset: str,
path_to_pdb: str,
path_to_models: str,
training_set: str,
include: str = False,
torsions: bool = False,
) -> None:
"""Generates model summary and comparison plots.
\f
Parameters
---------
dataset: str
Path to .txt file with dataset list (PDB+chain, e.g., 1a2bA).
path_to_pdb: str
Path to the directory with PDB files.
path_to_models: str.
Path to the directory with .csv prediction files.
include: str = False
Path to .txt file with a list of models to be included in comparison. If not provided, 8 models with the best accuracy are compared.
torsions: bool = False
Produces predicted and true Ramachandran plots for each model.
training_set:Path
Path to a file with the training set, can be PISCES, pdb code or pdb+chain.
"""
# check training and testing sets
if training_set:
check_sets(Path(dataset), Path(training_set))
else:
# Warn and ask for confirmation to continue.
if click.confirm(
"Cannot compare training and testing sets. YOUR COMPARISON MIGHT NOT BE STATISTICALLY MEANINGFUL. Do you want to continue?"
):
click.echo("Continuing!")
else:
exit
# get model labels to include in comparison
if include:
with open(include) as file:
models_to_include = [x.strip("\n") for x in file.readlines()]
df = get_cath.read_data(f"{Path(os.path.dirname(sys.argv[0]))/'cath-domain-description-file.txt'}")
filtered_df = get_cath.filter_with_user_list(df, dataset)
df_with_sequence = get_cath.append_sequence(
filtered_df, Path(path_to_pdb)
)
accuracy = []
# load predictions
list_of_models = {}
for name in os.listdir(path_to_models):
if name.split(".")[-1] == "csv":
path_to_file=Path(path_to_models)/name
with open(path_to_file.with_suffix('.txt')) as datasetmap:
model= get_cath.load_prediction_matrix(df_with_sequence, path_to_file.with_suffix('.txt'), path_to_file)
ignore_uncommon=eval(datasetmap.readline().split()[1])
pdbs=datasetmap.readline().split()
if len(pdbs)>1:
#visualize accuracy and entropy on pdb files
for protein in pdbs[1:]:
visualization.show_accuracy(
df_with_sequence,
protein[:4],
model,
Path(path_to_models) / f"{name.strip('.csv')}_{protein}.pdb",
Path(path_to_pdb),
ignore_uncommon,
)
list_of_models[name]=(model,ignore_uncommon)
for model in list_of_models:
# make model summary
visualization.make_model_summary(
df_with_sequence,
list_of_models[model][0],
str(Path(path_to_models) / model),
Path(path_to_pdb),
list_of_models[model][1],
)
# get overall accuracy
accuracy.append(
[
get_cath.score(
df_with_sequence,
list_of_models[model][0],
ignore_uncommon=list_of_models[model][1],
)[0][0],
model,
]
)
# make Ramachandran plots
if torsions:
sequence, prediction, _, angle = get_cath.format_angle_sequence(
df_with_sequence,
list_of_models[model][0],
Path(path_to_pdb),
ignore_uncommon=list_of_models[model][1],
)
visualization.ramachandran_plot(
sequence,
list(get_cath.most_likely_sequence(prediction)),
angle,
str(Path(path_to_models) / model),
)
accuracy = sorted(accuracy)
# pick 8 best models
filtered_models = [list_of_models[model[1]][0] for model in accuracy[-8:]]
ignore_list= [list_of_models[model[1]][1] for model in accuracy[-8:]]
filtered_labels = [model[1] for model in accuracy[-8:]]
# include specified models
if include:
if len(models_to_include) <= 8:
for index, model_name in enumerate(models_to_include):
if model_name not in filtered_labels:
filtered_models[index] = list_of_models[model_name][0]
ignore_list[index]=list_of_models[model_name][1]
filtered_labels[index] = model_name
else:
raise ValueError(
"Too many models are give to plot, select no more than 8 models."
)
visualization.compare_model_accuracy(
df_with_sequence,
filtered_models,
filtered_labels,
Path(path_to_models),
ignore_list,
)
if __name__=="__main__":
compare_models()