-
Notifications
You must be signed in to change notification settings - Fork 170
/
model.py
212 lines (171 loc) · 8.72 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# CNN-LSTM-CTC-OCR
# Copyright (C) 2017 Jerod Weinman
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# model.py -- Constructs the graph representing the network
# model. Inputs start from convnet_layers(), whose outputs hook into
# rnn_layers(), which produces the logits for CTC loss (for
# training) and decoding (for prediction/evaluation).
import tensorflow as tf
from tensorflow.contrib import learn
# Layer params: Filts K Padding Name BatchNorm?
layer_params = [ [ 64, 3, 'valid', 'conv1', False],
[ 64, 3, 'same', 'conv2', True], # pool
[ 128, 3, 'same', 'conv3', False],
[ 128, 3, 'same', 'conv4', True], # hpool
[ 256, 3, 'same', 'conv5', False],
[ 256, 3, 'same', 'conv6', True], # hpool
[ 512, 3, 'same', 'conv7', False],
[ 512, 3, 'same', 'conv8', True] ] # hpool 3
rnn_size = 2**9 # Dimensionality of all RNN elements' hidden layers
dropout_rate = 0.5 # For RNN layers (currently not used--uncomment below)
def conv_layer( bottom, params, training ):
"""Build a convolutional layer using entry from layer_params)"""
batch_norm = params[4] # Boolean
if batch_norm:
activation = None
else:
activation = tf.nn.relu
kernel_initializer = tf.contrib.layers.variance_scaling_initializer()
bias_initializer = tf.constant_initializer( value=0.0 )
top = tf.layers.conv2d( bottom,
filters=params[0],
kernel_size=params[1],
padding=params[2],
activation=activation,
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer,
name=params[3] )
if batch_norm:
top = norm_layer( top, training, params[3]+'/batch_norm' )
top = tf.nn.relu( top, name=params[3]+'/relu' )
return top
def pool_layer( bottom, wpool, padding, name ):
"""Short function to build a pooling layer with less syntax"""
top = tf.layers.max_pooling2d( bottom,
2,
[2, wpool],
padding=padding,
name=name )
return top
def norm_layer( bottom, training, name):
"""Short function to build a batch normalization layer with less syntax"""
top = tf.layers.batch_normalization( bottom,
axis=3, # channels last
training=training,
name=name )
return top
def convnet_layers( inputs, widths, mode ):
"""
Build convolutional network layers attached to the given input tensor
"""
training = (mode == learn.ModeKeys.TRAIN)
# inputs should have shape [ ?, 32, ?, 1 ]
with tf.variable_scope( "convnet" ): # h,w
conv1 = conv_layer( inputs, layer_params[0], training ) # 30,30
conv2 = conv_layer( conv1, layer_params[1], training ) # 30,30
pool2 = pool_layer( conv2, 2, 'valid', 'pool2' ) # 15,15
conv3 = conv_layer( pool2, layer_params[2], training ) # 15,15
conv4 = conv_layer( conv3, layer_params[3], training ) # 15,15
pool4 = pool_layer( conv4, 1, 'valid', 'pool4' ) # 7,14
conv5 = conv_layer( pool4, layer_params[4], training ) # 7,14
conv6 = conv_layer( conv5, layer_params[5], training ) # 7,14
pool6 = pool_layer( conv6, 1, 'valid', 'pool6') # 3,13
conv7 = conv_layer( pool6, layer_params[6], training ) # 3,13
conv8 = conv_layer( conv7, layer_params[7], training ) # 3,13
pool8 = tf.layers.max_pooling2d( conv8, [3, 1], [3, 1],
padding='valid',
name='pool8' ) # 1,13
# squeeze row dim
features = tf.squeeze( pool8, axis=1, name='features' )
sequence_length = get_sequence_lengths( widths )
# Vectorize
sequence_length = tf.reshape( sequence_length, [-1], name='seq_len' )
return features, sequence_length
def get_sequence_lengths( widths ):
"""Tensor calculating output sequence length from original image widths"""
kernel_sizes = [params[1] for params in layer_params]
with tf.variable_scope("sequence_length"):
conv1_trim = tf.constant( 2 * (kernel_sizes[0] // 2),
dtype=tf.int32,
name='conv1_trim' )
one = tf.constant( 1, dtype=tf.int32, name='one' )
two = tf.constant( 2, dtype=tf.int32, name='two' )
after_conv1 = tf.subtract( widths, conv1_trim, name='after_conv1' )
after_pool2 = tf.floor_div( after_conv1, two, name='after_pool2' )
after_pool4 = tf.subtract( after_pool2, one, name='after_pool4' )
after_pool6 = tf.subtract( after_pool4, one, name='after_pool6' )
after_pool8 = tf.identity( after_pool6, name='after_pool8' )
return after_pool8
def rnn_layer( bottom_sequence, sequence_length, rnn_size, scope ):
"""Build bidirectional (concatenated output) RNN layer"""
weight_initializer = tf.truncated_normal_initializer( stddev=0.01 )
# Default activation is tanh
cell_fw = tf.contrib.cudnn_rnn.CudnnCompatibleLSTMCell( rnn_size )
cell_bw = tf.contrib.cudnn_rnn.CudnnCompatibleLSTMCell( rnn_size )
# Pre-CUDNN (slower) alternatve. Default activation is tanh .
#cell_fw = tf.contrib.rnn.LSTMCell( rnn_size,
# initializer=weight_initializer)
#cell_bw = tf.contrib.rnn.LSTMCell( rnn_size,
# initializer=weight_initializer)
# Include?
#cell_fw = tf.contrib.rnn.DropoutWrapper( cell_fw,
# input_keep_prob=dropout_rate )
#cell_bw = tf.contrib.rnn.DropoutWrapper( cell_bw,
# input_keep_prob=dropout_rate )
rnn_output,_ = tf.nn.bidirectional_dynamic_rnn(
cell_fw,
cell_bw,
bottom_sequence,
sequence_length=sequence_length,
time_major=True,
dtype=tf.float32,
scope=scope )
# Concatenation allows a single output op because [A B]*[x;y] = Ax+By
# [ paddedSeqLen batchSize 2*rnn_size]
rnn_output_stack = tf.concat( rnn_output, 2, name='output_stack' )
return rnn_output_stack
def rnn_layers( features, sequence_length, num_classes ):
"""Build a stack of RNN layers from input features"""
# Input features is [batchSize paddedSeqLen numFeatures]
logit_activation = tf.nn.relu
weight_initializer = tf.contrib.layers.variance_scaling_initializer()
bias_initializer = tf.constant_initializer( value=0.0 )
with tf.variable_scope( "rnn" ):
# Transpose to time-major order for efficiency
rnn_sequence = tf.transpose( features,
perm=[1, 0, 2],
name='time_major' )
rnn1 = rnn_layer( rnn_sequence, sequence_length, rnn_size, 'bdrnn1' )
rnn2 = rnn_layer( rnn1, sequence_length, rnn_size, 'bdrnn2' )
rnn_logits = tf.layers.dense( rnn2,
num_classes+1,
activation=logit_activation,
kernel_initializer=weight_initializer,
bias_initializer=bias_initializer,
name='logits' )
return rnn_logits
def ctc_loss_layer( rnn_logits, sequence_labels, sequence_length,
reduce_mean=True ):
"""Build CTC Loss layer for training"""
losses = tf.nn.ctc_loss( sequence_labels,
rnn_logits,
sequence_length,
time_major=True,
ignore_longer_outputs_than_inputs=True )
if (reduce_mean):
loss = tf.reduce_mean( losses )
else:
loss = tf.reduce_sum( losses )
return loss