-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathscanner.py
243 lines (194 loc) · 8.84 KB
/
scanner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#!/usr/bin/env python3.10
import os
import sys
import signal
import time
import numpy as np
from argparse import ArgumentParser
from gnuradio import blocks, gr, soapy
from gnuradio.fft import logpwrfft, window
from scipy.signal import find_peaks
import matplotlib.pyplot as plt
from gnuradio.fft import window
import traceback
pause = False
button = None
def signal_handler(sig, frame):
sys.exit()
class scan_python(gr.top_block):
def __init__(self, driver, device_args, samp_rate, rf_bandwidth, gain, freq, fft_size, output_file):
gr.top_block.__init__(self, "Not titled yet", catch_exceptions=True)
self.driver = driver
self.device_args = device_args
self.samp_rate = samp_rate
self.rf_bandwidth = rf_bandwidth
self.freq = freq
self.fft_size = fft_size
self.gain = gain
self.output_file = output_file
self.logpwrfft_x_0 = logpwrfft.logpwrfft_c(
sample_rate=samp_rate,
fft_size=fft_size,
ref_scale=1,
frame_rate=420,
avg_alpha=1.0,
average=True,
win=window.hann,
shift=True
)
self.soapy_source_0 = None
dev = f'driver={driver}'
stream_args = ''
tune_args = ['']
settings = ['']
self.soapy_source_0 = soapy.source(dev, "fc32", 1, device_args,
stream_args, tune_args, settings)
self.soapy_source_0.set_sample_rate(0, samp_rate)
self.soapy_source_0.set_bandwidth(0, rf_bandwidth)
self.soapy_source_0.set_gain_mode(0, False)
self.soapy_source_0.set_frequency(0, freq)
self.soapy_source_0.set_gain(0, int(gain))
self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_float*fft_size, output_file, True)
self.blocks_file_sink_0.set_unbuffered(True)
self.connect((self.soapy_source_0, 0), (self.logpwrfft_x_0, 0))
self.connect((self.logpwrfft_x_0, 0), (self.blocks_file_sink_0, 0))
def start_and_wait_for_data(self, max_file_size):
self.start()
while True:
time.sleep(0.1)
if os.path.exists(self.output_file):
current_size = os.path.getsize(self.output_file)
if current_size >= max_file_size:
if current_size > max_file_size:
self.truncate_file(max_file_size)
break
self.stop()
self.wait()
def truncate_file(self, max_file_size):
try:
with open(self.output_file, 'r+b') as f:
f.seek(max_file_size)
f.truncate()
os.fsync(f.fileno())
except Exception as e:
print("Failed to truncate file:", str(e))
def scan_frequency_range(driver, device_args, start_freq, end_freq, gain, bandwidth, samplerate, fftsize, frames, output_file):
num_steps = int((end_freq - start_freq) / bandwidth) + 1
all_data = []
for step in range(num_steps):
current_freq = start_freq + step * bandwidth
print(f"Scanning {int(current_freq / 1e6)} MHz")
tb = scan_python(driver, device_args, samplerate, bandwidth, gain, current_freq, fftsize, output_file)
tb.start_and_wait_for_data(fftsize * 4 * frames * (step + 1))
tb.stop()
tb.wait()
with open(output_file, "rb") as file:
all_data = np.fromfile(file, dtype=np.float32)
all_fft_results = []
for step in range(num_steps):
start_index = fftsize * frames * step
end_index = start_index + fftsize * frames
if end_index > len(all_data):
break
fft_mat = all_data[start_index:end_index].reshape(-1, fftsize)
mean_fft = np.mean(fft_mat, axis=0)
all_fft_results.extend(mean_fft)
return all_fft_results
def adjust_bandwidth(start_freq, end_freq, init_bandwidth, max_bandwidth):
total_range = end_freq - start_freq
num_bands = total_range / init_bandwidth
if num_bands.is_integer():
return init_bandwidth
print("Bandwidth does not divide evenly into the total range, adjusting...")
if num_bands < 1:
return total_range
else:
num_bands = round(num_bands)
adjusted_bandwidth = total_range / num_bands
if max_bandwidth is not None:
adjusted_bandwidth = min(adjusted_bandwidth, max_bandwidth)
if total_range % adjusted_bandwidth != 0:
num_bands = int(total_range // adjusted_bandwidth) + 1
adjusted_bandwidth = total_range / num_bands
print("Adjusted bandwidth:", adjusted_bandwidth, "Hz")
return int(adjusted_bandwidth)
def update_data(args, line, scatter, ax, fig):
if not pause:
ts = int(time.time())
if not os.path.exists(args.dir):
os.makedirs(args.dir)
output_file = os.path.join(args.dir, f'{int(args.start/1e6)}_{int(args.end/1e6)}_{int(args.bandwidth/1e6)}_{args.fftsize}_{args.frames}_{ts}.bin')
rows = scan_frequency_range(args.driver, args.args, args.sdr_start, args.sdr_end, args.gain, args.bandwidth, args.samplerate, args.fftsize, args.frames, output_file)
frequencies = np.linspace(args.start / 1e6, args.end / 1e6, len(rows))
try:
cutoff = args.cutoff
if not args.cutoff:
cutoff = np.mean(rows) + np.std(rows) * 2
print("Cutoff:", args.cutoff)
peaks, properties = find_peaks(rows, height=cutoff, width=args.width, distance=args.distance)
peak_freqs = np.linspace(args.start / 1e6, args.end / 1e6, len(rows))[peaks]
peak_heights = properties['peak_heights']
for i in range(len(peak_freqs)):
print(f"Peak at {peak_freqs[i]:.2f} MHz, height {peak_heights[i]:.2f}")
line.set_data(frequencies, rows)
line.set_data(frequencies, rows)
scatter.set_data(peak_freqs, peak_heights)
ax.set_ylim([min(rows), max(rows) + 10])
ax.relim()
fig.canvas.draw()
fig.canvas.flush_events()
except Exception as e:
print("Failed to update plot:", e)
traceback.print_exc()
def on_click(event):
global pause, button
pause = not pause
button.label.set_text('Resume' if pause else 'Pause')
plt.draw()
def MHz_to_Hz(value):
return int(float(value) * 1e6)
def main():
global pause, button, fig
signal.signal(signal.SIGINT, signal_handler)
parser = ArgumentParser(description="FFT Frequency Scanner and Logger")
parser.add_argument("--driver", type=str, help="SoapySDR driver for the SDR device")
parser.add_argument("--args", type=str, default="", help="Device arguments for the SoapySDR device")
parser.add_argument("--dir", type=str, default="./fft", help="Directory to save FFT files")
parser.add_argument("--gain", type=float, default=60, help="Gain in dB")
parser.add_argument("--bandwidth", type=MHz_to_Hz, default=10000000, help="Bandwidth per FFT in MHz")
parser.add_argument("--samplerate", type=MHz_to_Hz, default=20000000, help="Sample rate in Hz")
parser.add_argument("--start", type=MHz_to_Hz, default=90000000, help="Start Frequency in MHz")
parser.add_argument("--end", type=MHz_to_Hz, default=150000000, help="End Frequency in MHz")
parser.add_argument("--fftsize", type=int, default=1024, help="FFT size, must be a power of 2")
parser.add_argument("--frames", type=int, default=2, help="Number of FFT frames to capture each sample period")
parser.add_argument("--cutoff", type=float, default=False, help="Cutoff frequency for peaks (default: 2 standard deviations above mean)")
parser.add_argument("--width", type=int, default=5, help="Minimum width for peak detection")
parser.add_argument("--distance", type=int, default=30, help="Minimum distance between peaks")
args = parser.parse_args()
adj = adjust_bandwidth(args.start, args.end, args.bandwidth, 52e6)
if adj != args.bandwidth:
print("Adjusted bandwidth:", adj/1e6, "MHz")
args.bandwidth = adj
args.sdr_start = int(args.start + args.bandwidth / 2)
args.sdr_end = int(args.end - args.bandwidth / 2)
fig, ax = plt.subplots()
plt.subplots_adjust(bottom=0.2)
ax_button = plt.axes([0.8, 0.05, 0.1, 0.075])
button = plt.Button(ax_button, 'Pause')
button.on_clicked(on_click)
fig.set_size_inches(12, 5)
line, = ax.plot([0], [0], label='Spectrum')
scatter, = ax.plot([0], [0], 'x', color='red', label='Detected Peaks')
ax.set_title('Peak Detection')
ax.set_xlabel('Frequency (MHz)')
ax.set_ylabel('Amplitude')
ax.legend()
ax.set_xlim([args.start / 1e6, args.end / 1e6])
fig.canvas.mpl_connect('key_press_event', pause)
while True:
update_data(args, line, scatter, ax, fig)
plt.ion()
plt.pause(0.1)
time.sleep(0.1)
if __name__ == '__main__':
main()