-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathCoDE4.m
465 lines (458 loc) · 20.7 KB
/
CoDE4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
function [mixPop,mixVal,nfeat,mixPopMax,mixValMax,nfeatMax,fitness,fitnessMin,mixPopfitMin,mixValfitMin,nfeatfitMin,overallBestVal,arrayGbestChange,archive,FES,FESj,goodCR,goodF,CRm1,Fm1,goodCR4,goodF4,CRm4,Fm4,goodCR5,goodF5,CRm5,Fm5,weight] = ...
CoDE4(mixPop,mixVal,nfeat,mixPopMax,mixValMax,nfeatMax,fitness,fitnessMin,mixPopfitMin,mixValfitMin,nfeatfitMin,selectD,overallBestVal,arrayGbestChange,archive,FES,FESj,goodCR,goodF,CRm1,Fm1,goodCR4,goodF4,CRm4,Fm4,goodCR5,goodF5,CRm5,Fm5,paraIndex,D,D1,dataset,gen,array,weight)
% Objective function
fun=@jFitnessFunction1;
arrayFirst = array;
arrayFifth = array;
arrayFourth = array;
F = [0.5 1 0.6 0.9 0.5 0.9 0.6 1];
CR = [0.1 0.2 0.9 0.8 0.9 0.1 0.8 0.2];
c = 1/10;
pj = 0.1;
threshold = 0.6;
%% %% ===========================mutation 1=====================================%%%%
if ~isempty(arrayFirst)
pop1 = mixPop(arrayFirst,:); % the old population becomes the current population
valParents1 = mixVal(arrayFirst);
nfeat01 = nfeat(arrayFirst);
fitness01 = fitness(arrayFirst);
popsize = length(arrayFirst);
[~,I1]=sort(fitness, 'ascend');%I1:the indices of xxpopsize,big->small
[~,I2]=sort(fitness01, 'descend');%I2:the indices of arrayFirst,small->big
for r = 1 : 3
pop1(I2(r),:) = mixPop(I1(r),:);%put the overall best into arrayFirst's smallest part
valParents1(I2(r)) = mixVal(I1(r));%put the overall best value into arrayFirst's smallest part
nfeat01(I2(r)) = nfeat(I1(r));
fitness01(I2(r)) = fitness(I1(r));
end
prefitness1 = fitness01;
if FESj > 1 && ~isempty(goodCR) && sum(goodF) > 0 % If goodF and goodCR are empty, pause the update
CRm1 = (1 - c) * CRm1 + c * mean(goodCR);
Fm1 = (1 - c) * Fm1 + c * sum(goodF .^ 2) / sum(goodF); % Lehmer mean
else
CRm1 = CR(paraIndex(1));
Fm1 = F(paraIndex(1));
end
% Generate CR according to a normal distribution with mean CRm, and std 0.1
% Generate F according to a cauchy distribution with location parameter Fm, and scale parameter 0.1
[Fj, CRj] = randFCR(popsize, CRm1, 0.1, Fm1, 0.1);
r0 = [1 : popsize];
popAll = [pop1; archive.pop];
[r1, r2] = gnR1R2(popsize, size(popAll, 1), r0);
% Find the p-best solutions
[~, indBest] = sort(fitness01, 'ascend');
pNP = max(round(pj * popsize), 5); % choose at least two best solutions
randindex = ceil(rand(1, popsize) * pNP); % select from [1, 2, 3, ..., pNP]
randindex = max(1, randindex); % to avoid the problem that rand = 0 and thus ceil(rand) = 0
pbest = pop1(indBest(randindex), :); % randomly choose one of the top 100p% solutions
% == == == == == == == == == == == == == == == Mutation == == == == == == == == == == == == ==
%DE/current to best/1
vi = pop1 + Fj(:, ones(1, D)) .* (pbest - pop1 + pop1(r1, :) - popAll(r2, :));
% == == == == = Crossover == == == == =
mask = rand(popsize, D) > CRj(:, ones(1, D)); % mask is used to indicate which elements of ui comes from the parent
rows = (1 : popsize)'; cols = floor(rand(popsize, 1) * D)+1; % choose one position where the element of ui doesn't come from the parent
jrand = sub2ind([popsize D], rows, cols); mask(jrand) = false;
ui = vi; ui(mask) = pop1(mask);
valOffspring1 = zeros(popsize,1);
nfeatOffspring1 = zeros(popsize,1);
fitnessOffspring1 = zeros(popsize,1);
for i = 1 : popsize
for j = 1 : D
if ui(i,j) >= threshold
ui(i,j) = 1;
else
ui(i,j) = 0;
end
if size(find(ui(i,:)==0),2)==D
r3 = randperm(D);
r4 = r3(1);
ui(i,r4) = 1;
end
if size(find(ui(i,:)==1),2)==D
r3 = randperm(D);
r4 = r3(1);
ui(i,r4) = 0;
end
end
end
for i = 1 : popsize
valOffspring1(i) = fun(dataset,ui(i,:),1);
nfeatOffspring1(i) = size(find(ui(i,:) == 1 ),2);
if FES >= 500000
fitnessOffspring1(i) = (0.1*(nfeatOffspring1(i)/D1))-0.9*valOffspring1(i);
else
fitnessOffspring1(i) = 0.1 - 0.9*valOffspring1(i);
end
end
for i = 1 : popsize
if nfeatOffspring1(i) <= selectD
% if valOffspring1(i) > mixValMax
% for k = 1 : 1
% valOffspring1(i) = valOffspring1(i) + fun(dataset,ui(i,:),1);
% FES = FES + 1;
% end
% valOffspring1(i) = valOffspring1(i)/2;
if valOffspring1(i) > mixValMax
mixPopMax = ui(i,:);
mixValMax = valOffspring1(i);
nfeatMax = nfeatOffspring1(i);
if FES >= 500000
fitnessOffspring1(i) = (0.1*(nfeatOffspring1(i)/D1))-0.9*valOffspring1(i);
else
fitnessOffspring1(i) = 0.1 - 0.9*valOffspring1(i);
end
end
% end
end
if fitnessOffspring1(i) < fitnessMin
fitnessMin = fitnessOffspring1(i);
mixPopfitMin = ui(i,:);
mixValfitMin = valOffspring1(i);
nfeatfitMin = nfeatOffspring1(i);
end
end
FESj = FESj + popsize;
FES = FES + popsize;
% I == 1: the parent is better; I == 2: the offspring is better
[fitness01, I] = min([fitness01, fitnessOffspring1], [], 2);
popold1 = pop1;
archive = updateArchive(archive, popold1(I == 2, :), fitness01(I == 2));
t0 = find(I == 2);
t = size(t0,1);
if t > 0
for i = 1 : t
A = find(ui(t0(i),:) == 1);
B = find(popold1(t0(i),:) == 1);
C = setdiff(A,B);
if size(C,2) == 0
break;
else
for j = 1 : size(C,2)
weight(1,C(j)) = weight(1,C(j)) + 1;
end
end
end
end
popold1(I == 2, :) = ui(I == 2, :);
fitness01(I == 2,:) = fitnessOffspring1(I == 2, :);
nfeat01(I == 2,:) = nfeatOffspring1(I == 2,:);
valParents1(I == 2,:) = valOffspring1(I == 2,:);
goodCR = CRj(I == 2);
goodF = Fj(I == 2);
if min(fitness01) < overallBestVal
overallBestVal = min(fitness01);
end
arrayGbestChange(1) = arrayGbestChange(1) + sum(prefitness1- fitness01);
for r = 1 : 3
if prefitness1(I2(r)) == fitness01(I2(r)) %if nothing changed at last,restore it.
popold1(I2(r),:) = mixPop(arrayFirst(I2(r)),:);
valParents1(I2(r)) = mixVal(arrayFirst(I2(r)));
nfeat01(I2(r)) = nfeat(arrayFirst(I2(r)));
fitness01(I2(r)) = fitness(arrayFirst(I2(r)));
end
end
mixPop(arrayFirst,:) = popold1;
mixVal(arrayFirst) = valParents1;
nfeat(arrayFirst) = nfeat01;
fitness(arrayFirst) = fitness01;
end
%% ===========================mutation 4 =====================================%%%%
if ~isempty(arrayFourth)
pop4 = mixPop(arrayFourth,:); % the old population becomes the current population
valParents4 = mixVal(arrayFourth);
nfeat04 = nfeat(arrayFourth);
fitness04 = fitness(arrayFourth);
popsize4 = length(arrayFourth);
[~,I1]=sort(fitness, 'ascend');
[~,I2]=sort(fitness04, 'descend');
for r = 1 : 3
pop4(I2(r),:) = mixPop(I1(r),:);
valParents4(I2(r)) = mixVal(I1(r));
nfeat04(I2(r)) = nfeat(I1(r));
fitness04(I2(r)) = fitness(I1(r));
end
prefitness4 = fitness04;
if gen > 1 && ~isempty(goodCR4) && sum(goodF4) > 0 % If goodF and goodCR are empty, pause the update
CRm4 = (1 - c) * CRm4 + c * mean(goodCR4);
Fm4 = (1 - c) * Fm4 + c * sum(goodF4 .^ 2) / sum(goodF4); % Lehmer mean
else
CRm4 = CR(paraIndex(4));
Fm4 = F(paraIndex(4));
end
% Generate CR according to a normal distribution with mean CRm, and std 0.1
% Generate F according to a cauchy distribution with location parameter Fm, and scale parameter 0.1
[F4, CR4] = randFCR(popsize4, CRm4, 0.1, Fm4, 0.1);
r0 = [1 : popsize4];
popAll = [pop4; archive.pop];
[r1, r2] = gnR1R2(popsize4, size(popAll, 1), r0);
% Find the p-best solutions
[~, indBest] = sort(fitness04, 'ascend');
pNP = max(round(pj * popsize4), 5); % choose at least two best solutions
randindex = ceil(rand(1, popsize4) * pNP); % select from [1, 2, 3, ..., pNP]
randindex = max(1, randindex); % to avoid the problem that rand = 0 and thus ceil(rand) = 0
pbest = pop4(indBest(randindex), :); % randomly choose one of the top 100p% solutions
% == == == == == == == == == == == == == == == Mutation == == == == == == == == == == == == ==
%-----DE/best/1
vi = pbest + F4(:, ones(1, D)) .* (pop4(r1, :) - popAll(r2, :));
mask = rand(popsize4, D) > CR4(:, ones(1, D)); % mask is used to indicate which elements of ui comes from the parent
rows = (1 : popsize4)'; cols = floor(rand(popsize4, 1) * D)+1; % choose one position where the element of ui doesn't come from the parent
jrand = sub2ind([popsize4 D], rows, cols); mask(jrand) = false;
ui = vi; ui(mask) = pop4(mask);
valOffspring4 = zeros(popsize4,1);
nfeatOffspring4 = zeros(popsize4,1);
fitnessOffspring4 = zeros(popsize4,1);
for i = 1 : popsize4
for j = 1 : D
if ui(i,j) >= threshold
ui(i,j) = 1;
else
ui(i,j) = 0;
end
if size(find(ui(i,:)==0),2)==D
r3 = randperm(D);
r4 = r3(1);
ui(i,r4) = 1;
end
if size(find(ui(i,:)==1),2)==D
r3 = randperm(D);
r4 = r3(1);
ui(i,r4) = 0;
end
end
end
for i = 1 : popsize4
valOffspring4(i) = fun(dataset,ui(i,:),1);
nfeatOffspring4(i) = size(find(ui(i,:) == 1 ),2);
if FES >= 500000
fitnessOffspring4(i) = (0.1*(nfeatOffspring4(i)/D1))-0.9*valOffspring4(i);
else
fitnessOffspring4(i) = 0.1 - 0.9*valOffspring4(i);
end
end
for i = 1 : popsize4
if nfeatOffspring4(i) <= selectD
% if valOffspring4(i) > mixValMax
% for k = 1 : 1
% valOffspring4(i) = valOffspring4(i) + fun(dataset,ui(i,:),1);
% FES = FES + 1;
% end
% valOffspring4(i) = valOffspring4(i)/2;
if valOffspring4(i) > mixValMax
mixPopMax = ui(i,:);
mixValMax = valOffspring4(i);
nfeatMax = nfeatOffspring4(i);
if FES >= 500000
fitnessOffspring4(i) = (0.1*(nfeatOffspring4(i)/D1))-0.9*valOffspring4(i);
else
fitnessOffspring4(i) = 0.1 - 0.9*valOffspring4(i);
end
end
% end
end
if fitnessOffspring4(i) < fitnessMin
fitnessMin = fitnessOffspring4(i);
mixPopfitMin = ui(i,:);
mixValfitMin = valOffspring4(i);
nfeatfitMin = nfeatOffspring4(i);
end
end
FES = FES + popsize4;
% == == == == == == == == == == == == == == == Selection == == == == == == == == == == == == ==
% I == 1: the parent is better; I == 2: the offspring is better
[fitness04, I] = min([fitness04, fitnessOffspring4], [], 2);
popold4 = pop4;
archive = updateArchive(archive, popold4(I == 2, :), fitness04(I == 2));
t0 = find(I == 2);
t = size(t0,1);
if t > 0
for i = 1 : t
A = find(ui(t0(i),:) == 1);
B = find(popold4(t0(i),:) == 1);
C = setdiff(A,B);
if size(C,2) == 0
break;
else
for j = 1 : size(C,2)
weight(1,C(j)) = weight(1,C(j)) + 1;
end
end
end
end
popold4(I == 2, :) = ui(I == 2, :);
fitness04(I == 2,:) = fitnessOffspring4(I == 2, :);
nfeat04(I == 2, :) = nfeatOffspring4(I == 2, :);
valParents4(I == 2, :) = valOffspring4(I == 2, :);
goodCR4 = CR4(I == 2);
goodF4 = F4(I == 2);
if min(fitness04) < overallBestVal
overallBestVal = min(fitness04);
end
arrayGbestChange(4) = arrayGbestChange(4) + sum(prefitness4- fitness04);
for r = 1 : 3
if prefitness4(I2(r)) == fitness04(I2(r))
popold4(I2(r),:) = mixPop(arrayFourth(I2(r)),:);
valParents4(I2(r)) = mixVal(arrayFourth(I2(r)));
nfeat04(I2(r)) = nfeat(arrayFourth(I2(r)));
fitness04(I2(r)) = fitness(arrayFourth(I2(r)));
end
end
mixPop(arrayFourth,:) = popold4;
mixVal(arrayFourth) = valParents4;
nfeat(arrayFourth) = nfeat04;
fitness(arrayFourth) = fitness04;
end
%% ============================mutation 5 =====================================%%%%
if ~isempty(arrayFifth)
pop5 = mixPop(arrayFifth,:); % the old population becomes the current population
valParents5 = mixVal(arrayFifth);
nfeat05 = nfeat(arrayFifth);
fitness05 = fitness(arrayFifth);
popsize5 = length(arrayFifth);
[~,I1]=sort(mixVal, 'ascend');
[~,I2]=sort(valParents5, 'descend');
for r = 1 : 3
pop5(I2(r),:) = mixPop(I1(r),:);
valParents5(I2(r)) = mixVal(I1(r));
nfeat05(I2(r)) = nfeat(I1(r));
fitness05(I2(r)) = fitness(I1(r));
end
prefitness5 = fitness05;
if gen > 1 && ~isempty(goodCR5) && sum(goodF5) > 0 % If goodF and goodCR are empty, pause the update
CRm5 = (1 - c) * CRm5 + c * mean(goodCR5);
Fm5 = (1 - c) * Fm5 + c * sum(goodF5 .^ 2) / sum(goodF5); % Lehmer mean
else
CRm5 = CR(paraIndex(5));
Fm5 = F(paraIndex(5));
end
% Generate CR according to a normal distribution with mean CRm, and std 0.1
% Generate F according to a cauchy distribution with location parameter Fm, and scale parameter 0.1
[F5, CR5] = randFCR(popsize5, CRm5, 0.1, Fm5, 0.1);
r0 = [1 : popsize5];
popAll = [pop5; archive.pop];
[r1, r2] = gnR1R2(popsize5, size(popAll, 1), r0);
% Find the p-best solutions
[~, indBest] = sort(fitness05, 'ascend');
pNP = max(round(pj * popsize5), 5); % choose at least two best solutions
randindex = ceil(rand(1, popsize5) * pNP); % select from [1, 2, 3, ..., pNP]
randindex = max(1, randindex); % to avoid the problem that rand = 0 and thus ceil(rand) = 0
pbest = pop5(indBest(randindex), :); % randomly choose one of the top 100p% solutions
rot = (0:1:popsize5-1);
ind = randperm(2);
a1 = randperm(popsize5); % shuffle locations of vectors
rt = rem(rot+ind(1),popsize5); % rotate indices by ind(1) positions
a2 = a1(rt+1); % rotate vector locations
rt = rem(rot+ind(2),popsize5);
a3 = a2(rt+1);
pm1 = pop5(a1,:); % shuffled population 1
pm2 = pop5(a2,:); % shuffled population 2
pm3 = pop5(a3,:); % shuffled population 3
% == == == == == == == == == == == == == == == Mutation == == == == == == == == == == == == ==
%DE/rand to best/1
vi =repmat(rand(popsize5,1),1,D) .* (pm1 - pop5) + F5(:, ones(1, D)) .* pop5(r1, :) - popAll(r2, :) + F5(:, ones(1, D)) .* ( pbest - repmat(rand(popsize5,1),1,D));
mask = rand(popsize5, D) > CR5(:, ones(1, D)); % mask is used to indicate which elements of ui comes from the parent
rows = (1 : popsize5)'; cols = floor(rand(popsize5, 1) * D)+1; % choose one position where the element of ui doesn't come from the parent
jrand = sub2ind([popsize5 D], rows, cols); mask(jrand) = false;
ui = vi; ui(mask) = pop5(mask);
valOffspring5 = zeros(popsize5,1);
nfeatOffspring5 = zeros(popsize5,1);
fitnessOffspring5 = zeros(popsize5,1);
for i = 1 : popsize5
for j = 1 : D
if ui(i,j) >= threshold
ui(i,j) = 1;
else
ui(i,j) = 0;
end
if size(find(ui(i,:)==0),2)==D
r3 = randperm(D);
r4 = r3(1);
ui(i,r4) = 1;
end
if size(find(ui(i,:)==1),2)==D
r3 = randperm(D);
r4 = r3(1);
ui(i,r4) = 0;
end
end
end
for i = 1 : popsize5
valOffspring5(i) = fun(dataset,ui(i,:),1);
nfeatOffspring5(i) = size(find(ui(i,:) == 1 ),2);
if FES >= 500000
fitnessOffspring5(i) = (0.1*(nfeatOffspring5(i)/D1))-0.9*valOffspring5(i);
else
fitnessOffspring5(i) = 0.1 - 0.9*valOffspring5(i);
end
end
for i = 1 : popsize5
if nfeatOffspring5(i) <= selectD
% if valOffspring5(i) > mixValMax
% for k = 1 : 1
% valOffspring5(i) = valOffspring5(i) + fun(dataset,ui(i,:),1);
% FES = FES + 1;
% end
% valOffspring5(i) = valOffspring5(i)/2;
if valOffspring5(i) > mixValMax
mixPopMax = ui(i,:);
mixValMax = valOffspring5(i);
nfeatMax = nfeatOffspring5(i);
if FES >= 500000
fitnessOffspring5(i) = (0.1*(nfeatOffspring5(i)/D1))-0.9*valOffspring5(i);
else
fitnessOffspring5(i) = 0.1 - 0.9*valOffspring5(i);
end
end
% end
end
if fitnessOffspring5(i) < fitnessMin
fitnessMin = fitnessOffspring5(i);
mixPopfitMin = ui(i,:);
mixValfitMin = valOffspring5(i);
nfeatfitMin = nfeatOffspring5(i);
end
end
FES = FES + popsize5;
% == == == == == == == == == == == == == == == Selection == == == == == == == == == == == == ==
% I == 1: the parent is better; I == 2: the offspring is better
[fitness05, I] = min([fitness05, fitnessOffspring5], [], 2);
popold5 = pop5;
archive = updateArchive(archive, popold5(I == 2, :), fitness05(I == 2));
t0 = find(I == 2);
t = size(t0,1);
if t > 0
for i = 1 : t
A = find(ui(t0(i),:) == 1);
B = find(popold5(t0(i),:) == 1);
C = setdiff(A,B);
if size(C,2) == 0
break;
else
for j = 1 : size(C,2)
weight(1,C(j)) = weight(1,C(j)) + 1;
end
end
end
end
popold5(I == 2, :) = ui(I == 2, :);
fitness05(I == 2,:) = fitnessOffspring5(I == 2, :);
nfeat05(I == 2, :) = nfeatOffspring5(I == 2, :);
valParents5(I == 2, :) = valOffspring5(I == 2, :);
goodCR5 = CR5(I == 2);
goodF5 = F5(I == 2);
if min(fitness05) < overallBestVal
overallBestVal = min(fitness05);
end
arrayGbestChange(5) = arrayGbestChange(5) + sum(prefitness5- fitness05);
for r = 1 : 3
if prefitness5(I2(r)) == fitness05(I2(r))
popold5(I2(r),:) = mixPop(arrayFifth(I2(r)),:);
valParents5(I2(r)) = mixVal(arrayFifth(I2(r)));
nfeat05(I2(r)) = nfeat(arrayFifth(I2(r)));
fitness05(I2(r)) = fitness(arrayFifth(I2(r)));
end
end
mixPop(arrayFifth,:) = popold5;
mixVal(arrayFifth) = valParents5;
nfeat(arrayFifth) = nfeat05;
fitness(arrayFifth) = fitness05;
end