-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_knn_verify.py
81 lines (58 loc) · 2.45 KB
/
main_knn_verify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import os
import torch
from metric_robustness.utils.initialization import read_params
from metric_robustness.utils.initialization import initialize_results_dir
from metric_robustness.utils.initialization import backup_params
from metric_robustness.utils.loaders import LoaderFactory
from metric_robustness.utils.torch_predictors import KnnFactory
import metric_robustness.evaluation.knn.mahalanobis_knn_verifiers as maha
import metric_robustness.evaluation.knn.euclidean_knn_verifiers as euc
# from metric_robustness.evaluation.nn_only.exact import ExactSolverFactory
DEFAULT_CONFIG_PATH = 'config/knn_verify.ini'
params = read_params(DEFAULT_CONFIG_PATH)
initialize_results_dir(params.get('results_dir'))
backup_params(params, params.get('results_dir'))
X_train, y_train, X_test, y_test = LoaderFactory().create(
name=params.get('dataset'),
root=params.get('dataset_dir'),
random=True,
seed=params.getint('split_seed')
)()
X_train = torch.tensor(X_train, dtype=torch.float, device=params.get('device'))
y_train = torch.tensor(y_train, dtype=torch.long, device=params.get('device'))
X_test = torch.tensor(X_test, dtype=torch.float, device=params.get('device'))
y_test = torch.tensor(y_test, dtype=torch.long, device=params.get('device'))
if params.get('metric') == 'euclidean':
psd_matrix = None
def verifier(z, X, Y): return euc.batch_triple_verify(
z, X, Y, params.getint('k'))
elif params.get('metric') == 'mahalanobis':
psd_matrix = np.loadtxt(
params.get('psd_matrix_path'),
)
psd_matrix = torch.tensor(
psd_matrix, dtype=torch.float, device=params.get('device'))
def verifier(z, X, Y): return maha.batch_triple_verify(
z, X, Y, params.getint('k'), M=psd_matrix
)
else:
raise Exception('unsupported metric')
predictor = KnnFactory().create(
params.get('metric'), X_train, y_train,
n_neighbors=params.getint('k'), M=psd_matrix
)
n_eval = params.getint('n_eval')
perturbation_norms = np.empty(n_eval)
for i in range(n_eval):
if predictor.predict_individual(X_test[i]) == y_test[i]:
mask = (y_train == y_test[i])
perturbation_norm = verifier(X_test[i], X_train[mask], X_train[~mask])
else:
perturbation_norm = 0
perturbation_norms[i] = perturbation_norm
print(f'{i+1:{len(str(n_eval))}d}/{n_eval}: {perturbation_norm:8.4f}')
np.savetxt(
os.path.join(params.get('results_dir'), 'perturbation_norms.txt'),
perturbation_norms
)