-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathneural_network.py
executable file
·273 lines (229 loc) · 8.4 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import random
import math
import copy
class NeuralNetwork(object):
"""docstring for NeuralNetwork"""
def __init__(self,
layers=[],
alpha=0.3,
toler=0.1,
max_iter=10000,
lamda=0.0,
active_func='sigmoid',
method='BGD',
loss='MSE'):
self.layers = layers
self.alpha = alpha
self.toler = toler
self.max_iter = max_iter
self.lamda = lamda
if active_func == 'sigmoid':
self.active = self.sigmoid
self.active_derive = self.sigmoid_derive
else:
self.active = self.tanh
self.active_derive = self.tanh_derive
self.method = method
self.item_loss = (self.mean_square_error
if loss == 'MSE' else self.cross_entropy)
self.num_layers = len(layers)
self.weights = []
self.bias = []
for i in range(1, self.num_layers):
n = self.layers[i - 1]
m = self.layers[i]
self.weights.append(
np.random.normal(loc=0.0, scale=1.0 / np.sqrt(n), size=(m, n)))
self.bias.append(np.zeros((m, 1)))
def fit(self, data_set, target_set, debug=False):
self.data_mat = np.mat(data_set)
self.target_mat = np.mat(target_set)
self.train(debug)
def train(self, debug):
data_size, _ = np.shape(self.data_mat)
_iter = 0
while _iter < self.max_iter:
indexes = self.get_batch()
outs = self.forward(indexes, self.weights, self.bias)
targets = [self.target_mat[i].T for i in indexes]
predict = [out[-1] for out in outs]
batch_size = len(indexes)
if debug:
self.gradient_check(outs, targets, indexes)
debug = False
errors = self.loss(batch_size, predict, targets)
if (_iter) % 100 == 0:
self.alpha = max(1e-4, self.alpha * 0.98)
print("loss:", errors, " lr:", self.alpha)
if errors < self.toler:
break
self.gradient_descent(outs, targets, batch_size)
_iter += 1
def get_batch(self, batch_size=16):
data_size, _ = np.shape(self.data_mat)
if self.method == 'BGD': # Batch gradient descent
indexes = range(data_size)
elif self.method == 'SGD': # Stochastic gradient descent
indexes = [random.randint(0, data_size - 1)]
elif self.method == 'MBGD': # Mini-batch gradient descent
indexes = [random.randint(0, data_size - 1) for x in range(batch_size)]
return indexes
def forward(self, indexes, weights, bias):
outs = []
for i in indexes:
actives = []
actives.append(self.data_mat[i].T)
for j in range(1, self.num_layers):
Oj = np.dot(weights[j - 1], actives[j - 1]) + bias[j - 1]
active_out = self.active(Oj)
actives.append(active_out)
outs.append(actives)
return outs
def gradient_descent(self, outs, targets, batch_size):
weights_delta = [np.zeros(w.shape) for w in self.weights]
bias_delta = [np.zeros(b.shape) for b in self.bias]
for target, out in zip(targets, outs):
error = self.item_loss(out[-1], target)
if error <= 0.01:
continue
weights_grad, bias_grad = self.back_propagation(out, target)
for k in range(self.num_layers - 1):
weights_delta[k] += weights_grad[k]
bias_delta[k] += bias_grad[k]
for k in range(self.num_layers - 1):
self.weights[k] -= self.alpha * \
(weights_delta[k] / batch_size + self.lamda * self.weights[k])
self.bias[k] -= self.alpha * bias_delta[k] / batch_size
def back_propagation(self, out, target):
output_layer = self.num_layers - 1
if self.item_loss == self.cross_entropy:
delta = out[output_layer] - target
else:
delta = -np.multiply(target - out[output_layer],
self.active_derive(out[output_layer]))
layer = output_layer - 1
weights_grad = [None for _ in range(self.num_layers - 1)]
bias_grad = [None for _ in range(self.num_layers - 1)]
while layer >= 0:
w_grad = np.dot(delta, out[layer].T)
weights_grad[layer] = w_grad
bias_grad[layer] = delta
delta = np.multiply(np.dot(self.weights[layer].T, delta),
self.active_derive(out[layer]))
layer -= 1
return weights_grad, bias_grad
def gradient_check(self, outs, targets, indexes):
weights = copy.deepcopy(self.weights)
bias = copy.deepcopy(self.bias)
target, out, k = targets[0], outs[0], indexes[0]
weights_grad, bias_grad = self.back_propagation(out, target)
epsilon = 10e-4
for layer_index in range(1, self.num_layers):
weight = weights[layer_index - 1]
m, n = np.shape(weight)
for i in range(m):
for j in range(n):
weight[i, j] += epsilon
error1 = self.item_loss(self.predict(self.data_mat[k], weights, bias),
target)
weight[i, j] -= 2 * epsilon
error2 = self.item_loss(self.predict(self.data_mat[k], weights, bias),
target)
weight[i, j] += epsilon
print("grad check, back-propagation-grad:",
weights_grad[layer_index - 1][i, j], " true-grad:",
(error1 - error2) / (2 * epsilon))
def loss(self, data_size, outs, targets):
errors = 0
for out, y in zip(outs, targets):
ce_loss = self.item_loss(out, y)
errors += ce_loss
errors = errors / data_size
weight_decay = 0
for weight in self.weights:
weight_decay += np.sum(np.multiply(weight, weight))
weight_decay = weight_decay * self.lamda / 2
errors = errors + weight_decay
return errors
def predict(self, x, weights, bias):
out = np.mat(x).T
for i in range(1, self.num_layers):
out = np.dot(weights[i - 1], out) + bias[i - 1]
out = self.active(out)
return out
def classifier(self, x):
out = self.predict(x, self.weights, self.bias)
return np.argmax(out)
def cross_entropy(self, out, y):
ce_loss = np.sum(-np.multiply(y, np.log(out)) -
np.multiply(1 - y, np.log(1 - out)))
return ce_loss
def mean_square_error(self, out, y):
minus = out - y
return np.sum(np.multiply(minus, minus)) / 2.0
def softmax(self, x):
_sum = np.sum(x)
return x / _sum
def sigmoid(self, x):
return 1.0 / (1.0 + np.exp(-x))
def sigmoid_derive(self, y):
return np.multiply(y, (1 - y))
def tanh(self, x):
return np.tanh(x)
def tanh_derive(self, y):
return 1 - np.multiply(y, y)
def load_dataset(csv_file, has_label):
data = pd.read_csv(csv_file)
data.iloc[:, 1:] = data.iloc[:, 1:].apply(lambda x: x / 255.0)
data_size, columns_size = data.shape
if has_label:
data_set = data.iloc[:, 1:].values
label_set = pd.get_dummies(data['label']).values
else:
data_set = data.iloc[:, :].values
label_set = None
all_mask = np.repeat(True, data_size)
for i in range(data_size):
if not np.isfinite(data_set[i, :]).all():
all_mask[i] = False
data_set = data_set[all_mask, :]
if has_label:
label_set = label_set[all_mask, :]
return data_set, label_set
if __name__ == '__main__':
train_set, train_label = load_dataset("../dataset/digit_recognizer/train.csv",
True)
data_size, columns_size = train_set.shape
train_label = np.clip(train_label, 0.05, 0.95)
test_set, test_label = load_dataset("../dataset/digit_recognizer/test.csv",
False)
test_count = len(test_set)
nn = NeuralNetwork(layers=[784, 128, 10],
alpha=1.0,
toler=0.01,
max_iter=10000,
lamda=0.0001,
active_func='sigmoid',
method='MBGD',
loss='cross_entropy')
nn.fit(train_set, train_label, False)
if test_label:
right_count = 0
for i in range(test_count):
label = nn.classifier(test_set[i])
if 1 == test_label[i, label]:
right_count += 1
print("testset acc:{}, right:{} / total:{}", right_count / test_count,
right_count, test_count)
else:
submission = []
for i in range(test_count):
label = nn.classifier(test_set[i])
submission.append([i + 1, label])
submission_df = pd.DataFrame(data=submission, columns=['ImageId', 'Label'])
submission_df.to_csv('../dataset/digit_recognizer/submission.csv',
index=False)