-
Notifications
You must be signed in to change notification settings - Fork 0
/
tests#test_tasks.py
167 lines (141 loc) · 6.87 KB
/
tests#test_tasks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from __future__ import print_function
import numpy as np
import pytest
from keras.utils.test_utils import get_test_data
from keras.models import Sequential
from keras.layers.core import Dense, Activation, TimeDistributedDense, Flatten
from keras.layers.recurrent import GRU
from keras.layers.convolutional import Convolution2D
from keras.utils.np_utils import to_categorical
def test_vector_classification():
np.random.seed(1337)
nb_hidden = 10
print('vector classification data:')
(X_train, y_train), (X_test, y_test) = get_test_data(nb_train=1000,
nb_test=200,
input_shape=(10,),
classification=True,
nb_class=2)
print('X_train:', X_train.shape)
print('X_test:', X_test.shape)
print('y_train:', y_train.shape)
print('y_test:', y_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
model = Sequential([
Dense(nb_hidden, input_shape=(X_train.shape[-1],), activation='relu'),
Dense(y_train.shape[-1], activation='softmax')
])
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
history = model.fit(X_train, y_train, nb_epoch=15, batch_size=16,
validation_data=(X_test, y_test),
show_accuracy=True, verbose=0)
assert(history.history['val_acc'][-1] > 0.8)
def test_vector_reg():
np.random.seed(1337)
nb_hidden = 10
print('vector regression data:')
(X_train, y_train), (X_test, y_test) = get_test_data(nb_train=1000,
nb_test=200,
input_shape=(10,),
output_shape=(2,),
classification=False)
print('X_train:', X_train.shape)
print('X_test:', X_test.shape)
print('y_train:', y_train.shape)
print('y_test:', y_test.shape)
model = Sequential()
model.add(Dense(nb_hidden, input_shape=(X_train.shape[-1],)))
model.add(Activation('tanh'))
model.add(Dense(y_train.shape[-1]))
model.compile(loss='hinge', optimizer='adagrad')
history = model.fit(X_train, y_train, nb_epoch=12, batch_size=16,
validation_data=(X_test, y_test), verbose=0)
assert (history.history['val_loss'][-1] < 0.9)
def test_temporal_clf():
np.random.seed(1337)
print('temporal classification data:')
(X_train, y_train), (X_test, y_test) = get_test_data(nb_train=1000,
nb_test=200,
input_shape=(3, 5),
classification=True,
nb_class=2)
print('X_train:', X_train.shape)
print('X_test:', X_test.shape)
print('y_train:', y_train.shape)
print('y_test:', y_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
model = Sequential()
model.add(GRU(y_train.shape[-1], input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adadelta')
history = model.fit(X_train, y_train, nb_epoch=12, batch_size=16,
validation_data=(X_test, y_test),
show_accuracy=True, verbose=0)
assert(history.history['val_acc'][-1] > 0.9)
def test_temporal_reg():
np.random.seed(1337)
print('temporal regression data:')
(X_train, y_train), (X_test, y_test) = get_test_data(nb_train=1000,
nb_test=200,
input_shape=(3, 5),
output_shape=(2,),
classification=False)
print('X_train:', X_train.shape)
print('X_test:', X_test.shape)
print('y_train:', y_train.shape)
print('y_test:', y_test.shape)
model = Sequential()
model.add(GRU(y_train.shape[-1], input_shape=(X_train.shape[1], X_train.shape[2])))
model.compile(loss='hinge', optimizer='adam')
history = model.fit(X_train, y_train, nb_epoch=12, batch_size=16,
validation_data=(X_test, y_test), verbose=0)
assert(history.history['val_loss'][-1] < 0.8)
def test_seq_to_seq():
np.random.seed(1337)
print('sequence to sequence data:')
(X_train, y_train), (X_test, y_test) = get_test_data(nb_train=1000,
nb_test=200,
input_shape=(3, 5),
output_shape=(3, 5),
classification=False)
print('X_train:', X_train.shape)
print('X_test:', X_test.shape)
print('y_train:', y_train.shape)
print('y_test:', y_test.shape)
model = Sequential()
model.add(TimeDistributedDense(y_train.shape[-1], input_shape=(X_train.shape[1], X_train.shape[2])))
model.compile(loss='hinge', optimizer='rmsprop')
history = model.fit(X_train, y_train, nb_epoch=12, batch_size=16,
validation_data=(X_test, y_test), verbose=0)
assert(history.history['val_loss'][-1] < 0.8)
def test_img_clf():
np.random.seed(1337)
print('image classification data:')
(X_train, y_train), (X_test, y_test) = get_test_data(nb_train=1000,
nb_test=200,
input_shape=(3, 8, 8),
classification=True,
nb_class=2)
print('X_train:', X_train.shape)
print('X_test:', X_test.shape)
print('y_train:', y_train.shape)
print('y_test:', y_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
model = Sequential()
model.add(Convolution2D(8, 8, 8, input_shape=(3, 8, 8)))
model.add(Activation('sigmoid'))
model.add(Flatten())
model.add(Dense(y_test.shape[-1]))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='sgd')
history = model.fit(X_train, y_train, nb_epoch=12, batch_size=16,
validation_data=(X_test, y_test),
show_accuracy=True, verbose=0)
print(history.history['val_acc'][-1])
assert(history.history['val_acc'][-1] > 0.9)
if __name__ == '__main__':
print('Test different types of classification and regression tasks')
pytest.main([__file__])