forked from tamarott/SinGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaint2image.py
executable file
·80 lines (72 loc) · 4.11 KB
/
paint2image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from config import get_arguments
from SinGAN.manipulate import *
from SinGAN.training import *
from SinGAN.imresize import imresize
from SinGAN.imresize import imresize_to_shape
import SinGAN.functions as functions
if __name__ == '__main__':
parser = get_arguments()
parser.add_argument('--input_dir', help='input image dir', default='Input/Images')
parser.add_argument('--input_name', help='training image name', required=True)
parser.add_argument('--ref_dir', help='input reference dir', default='Input/Paint')
parser.add_argument('--ref_name', help='reference image name', required=True)
parser.add_argument('--paint_start_scale', help='paint injection scale', type=int, required=True)
parser.add_argument('--quantization_flag', help='specify if to perform color quantization training', type=bool, default=False)
parser.add_argument('--mode', help='task to be done', default='paint2image')
opt = parser.parse_args()
opt = functions.post_config(opt)
Gs = []
Zs = []
reals = []
NoiseAmp = []
dir2save = functions.generate_dir2save(opt)
if dir2save is None:
print('task does not exist')
#elif (os.path.exists(dir2save)):
# print("output already exist")
else:
try:
os.makedirs(dir2save)
except OSError:
pass
real = functions.read_image(opt)
real = functions.adjust_scales2image(real, opt)
Gs, Zs, reals, NoiseAmp = functions.load_trained_pyramid(opt)
if (opt.paint_start_scale < 1) | (opt.paint_start_scale > (len(Gs)-1)):
print("injection scale should be between 1 and %d" % (len(Gs)-1))
else:
ref = functions.read_image_dir('%s/%s' % (opt.ref_dir, opt.ref_name), opt)
if ref.shape[3] != real.shape[3]:
ref = imresize_to_shape(ref, [real.shape[2], real.shape[3]], opt)
ref = ref[:, :, :real.shape[2], :real.shape[3]]
N = len(reals) - 1
n = opt.paint_start_scale
in_s = imresize(ref, pow(opt.scale_factor, (N - n + 1)), opt)
in_s = in_s[:, :, :reals[n - 1].shape[2], :reals[n - 1].shape[3]]
in_s = imresize(in_s, 1 / opt.scale_factor, opt)
in_s = in_s[:, :, :reals[n].shape[2], :reals[n].shape[3]]
if opt.quantization_flag:
opt.mode = 'paint_train'
dir2trained_model = functions.generate_dir2save(opt)
# N = len(reals) - 1
# n = opt.paint_start_scale
real_s = imresize(real, pow(opt.scale_factor, (N - n)), opt)
real_s = real_s[:, :, :reals[n].shape[2], :reals[n].shape[3]]
real_quant, centers = functions.quant(real_s)
plt.imsave('%s/real_quant.png' % dir2save, functions.convert_image_np(real_quant), vmin=0, vmax=1)
plt.imsave('%s/in_paint.png' % dir2save, functions.convert_image_np(in_s), vmin=0, vmax=1)
in_s = functions.quant2centers(ref, centers)
in_s = imresize(in_s, pow(opt.scale_factor, (N - n)), opt)
# in_s = in_s[:, :, :reals[n - 1].shape[2], :reals[n - 1].shape[3]]
# in_s = imresize(in_s, 1 / opt.scale_factor, opt)
in_s = in_s[:, :, :reals[n].shape[2], :reals[n].shape[3]]
plt.imsave('%s/in_paint_quant.png' % dir2save, functions.convert_image_np(in_s), vmin=0, vmax=1)
if (os.path.exists(dir2trained_model)):
# print('Trained model does not exist, training SinGAN for SR')
Gs, Zs, reals, NoiseAmp = functions.load_trained_pyramid(opt)
opt.mode = 'paint2image'
else:
train_paint(opt, Gs, Zs, reals, NoiseAmp, centers, opt.paint_start_scale)
opt.mode = 'paint2image'
out = SinGAN_generate(Gs[n:], Zs[n:], reals, NoiseAmp[n:], opt, in_s, n=n, num_samples=1)
plt.imsave('%s/start_scale=%d.png' % (dir2save, opt.paint_start_scale), functions.convert_image_np(out.detach()), vmin=0, vmax=1)