-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
77 lines (65 loc) · 2.43 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os, random, logging, warnings, numpy as np, pandas as pd
warnings.filterwarnings("ignore")
from fusemap import *
import scanpy as sc
from pathlib import Path
import copy
def main(args):
seed_all(0)
### set up logging
Path(args.output_save_dir).mkdir(parents=True, exist_ok=True)
setup_logging(args.output_save_dir)
arg_dict = vars(args)
dict_pd = {}
for keys in arg_dict.keys():
dict_pd[keys] = [arg_dict[keys]]
pd.DataFrame(dict_pd).to_csv(args.output_save_dir + "config.csv", index=False)
logging.info("\n\n\033[95mArguments:\033[0m \n%s\n\n", vars(args))
logging.info("\n\n\033[95mArguments:\033[0m \n%s\n\n", vars(ModelType))
### read data
logging.info("\n\nReading data...\n")
X_input = []
file_names = [
args.input_data_folder_path + f
for f in os.listdir(args.input_data_folder_path)
if os.path.isfile(os.path.join(args.input_data_folder_path, f))
]
for ind, file_name_i in enumerate(file_names):
X = sc.read_h5ad(file_name_i)
if "x" not in X.obs.columns:
try:
X.obs["x"] = X.obs["col"]
X.obs["y"] = X.obs["row"]
except:
try:
X.obs['x']=X.obsm['spatial'][:,0]
X.obs['y']=X.obsm['spatial'][:,1]
except:
raise ValueError(
"Please provide spatial coordinates in the obs['x'] and obs['y'] columns"
)
X.obs["name"] = f"section{ind}"
X.obs['file_name'] = file_name_i.split('/')[-1]
X_input.append(X)
kneighbor = ["delaunay"] * len(X_input)
input_identity = ["ST"] * len(X_input)
### train model
logging.info("\n\nTraining model...\n")
if args.mode == "integrate":
spatial_integrate(
X_input, args, kneighbor, input_identity
)
elif args.mode == "map":
for i in range(len(X_input)):
args_i=copy.copy(args)
args_i.output_save_dir = args.output_save_dir + f"/{X_input[i].obs['file_name'].unique()[0]}/"
spatial_map(
[X_input[i]], args_i, [kneighbor[i]], [input_identity[i]]
)
else:
raise ValueError(f"mode {args.mode} not recognized")
logging.info("\n\nDone!")
return
if __name__ == "__main__":
args = parse_input_args()
main(args)