-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmap-words-to-transitive-closures.py
125 lines (112 loc) · 5.82 KB
/
map-words-to-transitive-closures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import re
import time
import io
import sys
import argparse
from collections import defaultdict
from random import shuffle
#from math import max
# given one or more bilingual dictionaries, establish a map from each word in
# each language to the set of all words which translate into it according to
# the bilingual dictionaries
# parse/validate arguments
argparser = argparse.ArgumentParser()
argparser.add_argument("-i", "--dictionary-filenames", nargs='+', action='append', help=
" One or more bilingual dictionaries. For example, an english-french " +
" dictionary may have one line that reads 'dog ||| chien' and the " +
" filename should end with '.en-fr'")
argparser.add_argument("-o", "--output-filename", help=
" A map from each word in each language to all words which translate" +
" into it according to the dictionaries, possibly bridging multiple " +
" dictionaries. Each word in the output file is prefixed with the " +
" language identifier used as a suffix in the dictionary filename(s)" +
" Example output line: 'en:dog ||| fr:chien\tes:perro")
argparser.add_argument("-m", "--max-cluster-size", type=int, default=30, help=
" Ignore translation pairs which result in a cluster with size > m")
argparser.add_argument("-s", "--cluster-separator", default="_|_", help=
" Use this string to separate between words which belong to the same" +
" cluster in the output file.")
args = argparser.parse_args()
dictionary_tuples = []
langs = set()
dictionary_files = defaultdict(list)
for filename in args.dictionary_filenames[0]:
print filename
splits = filename.split('.')[-1].split('-')
assert len(splits) == 2
lang1, lang2 = splits
langs.add(lang1); langs.add(lang2);
print 'reading the {}->{} dictionary: {}'.format(lang1, lang2, filename)
for line in io.open(filename, encoding='utf8', mode='r'):
dictionary_tuples.append( (lang1, lang2, line) )
# initialize the map from each word (e.g., 'en:dog') to the index of its cluster in the
# array of clusters.
word_to_cluster_index = {}
clusters = []
dictionaries_counter, translations_counter, empty_clusters_counter = 0, 0, 0
max_cluster_size_hits = 0
# shuffle the dictionary items and process them one at a time
print 'dictionary_tuples[0] =', dictionary_tuples[0]
shuffle(dictionary_tuples)
print 'dictionary_tuples[0] =', dictionary_tuples[0]
for (src_lang, tgt_lang, line) in dictionary_tuples:
if translations_counter % 5000 == 0:
print 'done processing {} dictionary items (in total)'.format(translations_counter)
translations_counter += 1
# read the word pair
splits = line.strip().split(' ||| ')
assert len(splits) == 2
src_word = u'{}:{}'.format(src_lang, splits[0])
tgt_word = u'{}:{}'.format(tgt_lang, splits[1])
# if either word is new, create a cluster of size 1 for it.
for word in [src_word, tgt_word]:
if word not in word_to_cluster_index:
cluster_index = len(clusters)
clusters.append( set([word]) )
word_to_cluster_index[word] = cluster_index
# now merge two clusters if need be
cluster_indexes = [word_to_cluster_index[src_word], word_to_cluster_index[tgt_word]]
if cluster_indexes[0] == cluster_indexes[1]:
# there's nothing to do here. these two words already map to the same cluster
continue
# the cluster with the smaller index is expanded, and the one with the larger index is abandoned
smaller_index, larger_index = min(cluster_indexes), max(cluster_indexes)
if (len(clusters[smaller_index]) + len(clusters[larger_index]) > args.max_cluster_size):
max_cluster_size_hits += 1
continue
clusters[smaller_index] |= clusters[larger_index]
for word in clusters[larger_index]:
word_to_cluster_index[word] = smaller_index
clusters[larger_index] = None
empty_clusters_counter += 1
print 'done! stats:'
print '{} = total number of words'.format(len(word_to_cluster_index))
print '{} = total number of translation pairs used'.format(translations_counter)
print '{} = total number of clusters'.format(len(clusters) - empty_clusters_counter)
print '{} = total number of dictionaries used'.format(translations_counter)
print '{} = total number of times two clusters were not merged because their combined size exceeds the max cluster size ({})'.format(max_cluster_size_hits, args.max_cluster_size)
# group words which belong to the same cluster
cluster_index_to_word = defaultdict(list)
cluster_index_to_langs = defaultdict(set)
for word, cluster in word_to_cluster_index.items():
cluster_index_to_word[cluster].append(word)
cluster_index_to_langs[cluster].add(word[0:2])
# map established. Now, persist.
print 'now, persisting...'
lang_to_clusters_count = defaultdict(int)
cluster_size_to_number_of_clusters = defaultdict(int)
with io.open(args.output_filename, encoding='utf8', mode='w') as output_file:
for cluster_id in cluster_index_to_word.keys():
cluster_size_to_number_of_clusters[len(cluster_index_to_word[cluster_id])] += 1
for lang in cluster_index_to_langs[cluster_id]:
lang_to_clusters_count[lang] += 1
for word in cluster_index_to_word[cluster_id]:
output_file.write(u'{}\t{}\t10\n'.format('clusterid' + str(cluster_id), word))
print ""
print "histogram of cluster sizes:"
for cluster_size in sorted(cluster_size_to_number_of_clusters.keys()):
print 'cluster_size={}\tclusters_count={}'.format(cluster_size, cluster_size_to_number_of_clusters[cluster_size])
print ""
print "language coverage"
for lang in langs:
print 'lang {} is found in {} out of {} clusters = {}'.format(lang, lang_to_clusters_count[lang], len(cluster_index_to_word), 1.0 * lang_to_clusters_count[lang] / len(cluster_index_to_word))