-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFacial_Recognition_Part3.py
78 lines (64 loc) · 2.59 KB
/
Facial_Recognition_Part3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import cv2
import numpy as np
from os import listdir
from os.path import isfile, join
class ChkMe:
def __init__(self):
self.answer = None
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('trainer/trainer.yml')
cascadePath = 'C:/Python/Python39/Lib/site-packages/cv2/data/haarcascade_frontalface_default.xml'
faceCascade = cv2.CascadeClassifier(cascadePath)
font = cv2.FONT_HERSHEY_SIMPLEX
# initiate id counter
id = 0
names = ['None', 'Admin']
# Initialize and start realtime video capture
cam = cv2.VideoCapture(0,cv2.CAP_DSHOW)
cam.set(3, 640) # set video widht
cam.set(4, 480) # set video height
# Define min window size to be recognized as a face
minW = 0.1 * cam.get(3)
minH = 0.1 * cam.get(4)
while True:
ret, img = cam.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5,
minSize=(int(minW), int(minH)),
)
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
id, confidence = recognizer.predict(gray[y:y + h, x:x + w])
if (confidence < 100):
id = names[id]
k1 = " {0}%".format(round(100 - confidence))
if (100-int(confidence))>30:
self.answer="yes"
else:
id = "unknown"
k1 = " {0}%".format(round(100 - confidence))
cv2.putText(
img,
str(id),
(x + 5, y - 5),
font,
1,
(255, 255, 255),
2
)
display_str=self.answer
if display_str == "yes":
cv2.putText(img, "Unlocked", (250, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)
else:
cv2.putText(img, "locked", (250, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 0, 0), 2)
cv2.imshow('camera', img)
k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
# Do a bit of cleanup
print("\n [INFO] Exiting Program and cleanup stuff")
cam.release()
cv2.destroyAllWindows()