forked from anuragranj/spynet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtiming_util.lua
259 lines (206 loc) · 7.68 KB
/
timing_util.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
-- Copyright 2016 Anurag Ranjan and the Max Planck Gesellschaft.
-- All rights reserved.
-- This software is provided for research purposes only.
-- By using this software you agree to the terms of the license file
-- in the root folder.
-- For commercial use, please contact ps-license@tue.mpg.de.
require 'image'
local TF = require 'transforms'
require 'cutorch'
require 'nn'
require 'cunn'
require 'cudnn'
require 'nngraph'
require 'stn'
require 'spy'
local flowX = require 'flowExtensions'
local M = {}
local eps = 1e-6
local meanstd = {
mean = { 0.485, 0.456, 0.406 },
std = { 0.229, 0.224, 0.225 },
}
local pca = {
eigval = torch.Tensor{ 0.2175, 0.0188, 0.0045 },
eigvec = torch.Tensor{
{ -0.5675, 0.7192, 0.4009 },
{ -0.5808, -0.0045, -0.8140 },
{ -0.5836, -0.6948, 0.4203 },
},
}
local mean = meanstd.mean
local std = meanstd.std
------------------------------------------
local function createWarpModel()
local imgData = nn.Identity()()
local floData = nn.Identity()()
local imgOut = nn.Transpose({2,3},{3,4})(imgData)
local floOut = nn.Transpose({2,3},{3,4})(floData)
local warpImOut = nn.Transpose({3,4},{2,3})(nn.BilinearSamplerBHWD()({imgOut, floOut}))
local model = nn.gModule({imgData, floData}, {warpImOut})
return model
end
local down2 = nn.SpatialAveragePooling(2,2,2,2):cuda()
local down3 = nn.SpatialAveragePooling(2,2,2,2):cuda()
local down4 = nn.SpatialAveragePooling(2,2,2,2):cuda()
local down5 = nn.SpatialAveragePooling(2,2,2,2):cuda()
local up2 = nn.Sequential():add(nn.Transpose({2,3},{3,4})):add(nn.ScaleBHWD(2)):add(nn.Transpose({3,4},{2,3})):cuda()
local up3 = nn.Sequential():add(nn.Transpose({2,3},{3,4})):add(nn.ScaleBHWD(2)):add(nn.Transpose({3,4},{2,3})):cuda()
local up4 = nn.Sequential():add(nn.Transpose({2,3},{3,4})):add(nn.ScaleBHWD(2)):add(nn.Transpose({3,4},{2,3})):cuda()
local up5 = nn.Sequential():add(nn.Transpose({2,3},{3,4})):add(nn.ScaleBHWD(2)):add(nn.Transpose({3,4},{2,3})):cuda()
local warpmodel2 = createWarpModel():cuda()
local warpmodel3 = createWarpModel():cuda()
local warpmodel4 = createWarpModel():cuda()
local warpmodel5 = createWarpModel():cuda()
down2:evaluate()
down3:evaluate()
down4:evaluate()
down5:evaluate()
up2:evaluate()
up3:evaluate()
up4:evaluate()
up5:evaluate()
warpmodel2:evaluate()
warpmodel3:evaluate()
warpmodel4:evaluate()
warpmodel5:evaluate()
-------------------------------------------------
local modelL0, modelL1, modelL2, modelL3, modelL4, modelL5
local modelL1path, modelL2path, modelL3path, modelL4path, modelL5path
modelL1path = paths.concat('models', 'modelL1_4.t7')
modelL2path = paths.concat('models', 'modelL2_4.t7')
modelL3path = paths.concat('models', 'modelL3_4.t7')
modelL4path = paths.concat('models', 'modelL4_4.t7')
modelL5path = paths.concat('models', 'modelL5_4.t7')
modelL1 = torch.load(modelL1path)
if torch.type(modelL1) == 'nn.DataParallelTable' then
modelL1 = modelL1:get(1)
end
modelL1:evaluate()
modelL2 = torch.load(modelL2path)
if torch.type(modelL2) == 'nn.DataParallelTable' then
modelL2 = modelL2:get(1)
end
modelL2:evaluate()
modelL3 = torch.load(modelL3path)
if torch.type(modelL3) == 'nn.DataParallelTable' then
modelL3 = modelL3:get(1)
end
modelL3:evaluate()
modelL4 = torch.load(modelL4path)
if torch.type(modelL4) == 'nn.DataParallelTable' then
modelL4 = modelL4:get(1)
end
modelL4:evaluate()
modelL5 = torch.load(modelL5path)
if torch.type(modelL5) == 'nn.DataParallelTable' then
modelL5 = modelL5:get(1)
end
modelL5:evaluate()
local function getTrainValidationSplits(path)
local numSamples = sys.fexecute( "ls " .. opt.data .. "| wc -l")/3
local ff = torch.DiskFile(path, 'r')
local trainValidationSamples = torch.IntTensor(numSamples)
ff:readInt(trainValidationSamples:storage())
ff:close()
local train_samples = trainValidationSamples:eq(1):nonzero()
local validation_samples = trainValidationSamples:eq(2):nonzero()
return train_samples, validation_samples
-- body
end
M.getTrainValidationSplits = getTrainValidationSplits
local function loadImage(path)
local input = image.load(path, 3, 'float')
return input
end
M.loadImage = loadImage
local function loadFlow(filename)
TAG_FLOAT = 202021.25
local ff = torch.DiskFile(filename):binary()
local tag = ff:readFloat()
if tag ~= TAG_FLOAT then
xerror('unable to read '..filename..
' perhaps bigendian error','readflo()')
end
local w = ff:readInt()
local h = ff:readInt()
local nbands = 2
local tf = torch.FloatTensor(h, w, nbands)
ff:readFloat(tf:storage())
ff:close()
local flow = tf:permute(3,1,2)
return flow
end
M.loadFlow = loadFlow
local function computeInitFlowL1(imagesL1)
local h = imagesL1:size(3)
local w = imagesL1:size(4)
local _flowappend = torch.zeros(opt.batchSize, 2, h, w):cuda()
local images_in = torch.cat(imagesL1, _flowappend, 2)
local flow_est = modelL1:forward(images_in)
return flow_est
end
M.computeInitFlowL1 = computeInitFlowL1
local function computeInitFlowL2(imagesL2)
local imagesL1 = down2:forward(imagesL2:clone())
local _flowappend = up2:forward(computeInitFlowL1(imagesL1))*2
local _img2 = imagesL2[{{},{4,6},{},{}}]
imagesL2[{{},{4,6},{},{}}]:copy(warpmodel2:forward({_img2, _flowappend}))
local images_in = torch.cat(imagesL2, _flowappend, 2)
local flow_est = modelL2:forward(images_in)
return flow_est:add(_flowappend)
end
M.computeInitFlowL2 = computeInitFlowL2
local function computeInitFlowL3(imagesL3)
local imagesL2 = down3:forward(imagesL3:clone())
local _flowappend = up3:forward(computeInitFlowL2(imagesL2))*2
local _img2 = imagesL3[{{},{4,6},{},{}}]
imagesL3[{{},{4,6},{},{}}]:copy(warpmodel3:forward({_img2, _flowappend}))
local images_in = torch.cat(imagesL3, _flowappend, 2)
local flow_est = modelL3:forward(images_in)
return flow_est:add(_flowappend)
end
M.computeInitFlowL3 = computeInitFlowL3
local function computeInitFlowL4(imagesL4)
local imagesL3 = down4:forward(imagesL4)
local _flowappend = up4:forward(computeInitFlowL3(imagesL3))*2
local _img2 = imagesL4[{{},{4,6},{},{}}]
imagesL4[{{},{4,6},{},{}}]:copy(warpmodel4:forward({_img2, _flowappend}))
local images_in = torch.cat(imagesL4, _flowappend, 2)
local flow_est = modelL4:forward(images_in)
return flow_est:add(_flowappend)
end
M.computeInitFlowL4 = computeInitFlowL4
local function computeInitFlowL5(imagesL5)
local imagesL4 = down5:forward(imagesL5)
local _flowappend = up5:forward(computeInitFlowL4(imagesL4))*2
local _img2 = imagesL5[{{},{4,6},{},{}}]
imagesL5[{{},{4,6},{},{}}]:copy(warpmodel5:forward({_img2, _flowappend}))
local images_in = torch.cat(imagesL5, _flowappend, 2)
local flow_est = modelL5:forward(images_in)
return flow_est:add(_flowappend)
end
M.computeInitFlowL5 = computeInitFlowL5
local function getRawData(id)
local path1 = paths.concat(opt.data, (string.format("%05i", id) .."_img1.ppm"))
local path2 = paths.concat(opt.data, (string.format("%05i", id) .."_img2.ppm"))
local img1 = loadImage(path1)
local img2 = loadImage(path2)
local pathF = paths.concat(opt.data, (string.format("%05i", id) .."_flow.flo"))
local flow = loadFlow(pathF)
return img1, img2, flow
end
M.getRawData = getRawData
local testHook = function(id)
local path1 = paths.concat(opt.data, (string.format("%05i", id) .."_img1.ppm"))
local path2 = paths.concat(opt.data, (string.format("%05i", id) .."_img2.ppm"))
local img1 = loadImage(path1)
local img2 = loadImage(path2)
local images = torch.cat(img1, img2, 1)
local pathF = paths.concat(opt.data, (string.format("%05i", id) .."_flow.flo"))
local flow = loadFlow(pathF)
images = TF.ColorNormalize(meanstd)(images)
return images, flow
end
M.testHook = testHook
return M