-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLattice.cpp
407 lines (330 loc) · 11.7 KB
/
Lattice.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
#include "Lattice.h"
vector<vertex> vertices_m;
vector<vertex> vertices_f;
tbb::atomic<double> error;
int N;
int H;
int Redisplay_time;
double speed = 0;
double dt=0.02;
double ***voxels_m;
double ***voxels_f;
double *dVm;
double *dVf;
void Excite(double *Vm)
{
int xx = floor(1+(double)rand()/(double)RAND_MAX*(N-2));
int yy = floor(1+(double)rand()/(double)RAND_MAX*(N-2));
int zz = floor(1+(double)rand()/(double)RAND_MAX*(H-2));
int spot_radius = 2;
int xs,ys,zs,xe,ye,ze;
xs = xx - spot_radius;
ys = yy - spot_radius;
zs = zz - spot_radius;
xe = xx + spot_radius;
ye = yy + spot_radius;
ze = zz + spot_radius;
if (xs < 0) xs = 0;
if (xe > N-1) xe = N-1;
if (ys < 0) ys = 0;
if (ye > N-1) ye = N-1;
if (zs < 0) zs = 0;
if (ze > H-1) ze = H-1;
for (int x = xs; x<=xe; x++)
for (int y = ys; y<=ye; y++)
for (int z = zs; z<=ze; z++)
Vm[z*N*N+y*N+x] = -20;
}
void Init(double *Vm, double *Vf, double *mG, double *hG, double *jG, double *dG, double *fG,
double *XG, double *Cai, double *fs_m, double *fs_f, double *fs_e, Fibroblast *FB, double *f_sum, double *Fe)
{
//initializing function: sets the initial values of the state variables of the model
int i;
srand(int(time(NULL)));
for (i=0; i<N*N*H; i++)
{
Vm[i] = -80.;
Vf[i] = -60.;
fs_m[i] = 0;
fs_f[i]=0.;
fs_e[i]=0.;
mG[i] = 0.00231609 ;
hG[i] = 0.973114 ;
jG[i] = 0.84991 ;
dG[i] = 0.00434296 ;
fG[i] = 0.880756 ;
XG[i] = 0.018826 ;
Cai[i] = 0.000445703;
FB[i].C0=0.176258;
FB[i].C1=0.367597;
FB[i].C2=0.287479;
FB[i].C3=0.0998994;
FB[i].C4=0.0129962;
FB[i].O_shkr = 0.0555375;
}
/*for (i =0; i<3; i++)
for (int j=N-1; j>N-4; j--)
for (int k=H-1; k>H-4; k--)
Vm[k*N*N+j*N+i] = -31;*/
Excite(Vm);
for (i=0; i<(N+2)*(N+2)*(H+2); i++)
Fe[i] = 0;
/* read the initial conditions from binary
int fd = open("rst.bin",O_RDWR|O_CREAT | O_BINARY,S_IREAD|S_IWRITE);
read(fd,Vm,N*N*H*sizeof(double));
read(fd,mG,N*N*H*sizeof(double));
read(fd,hG,N*N*H*sizeof(double));
read(fd,jG,N*N*H*sizeof(double));
read(fd,dG,N*N*H*sizeof(double));
read(fd,fG,N*N*H*sizeof(double));
read(fd,XG,N*N*H*sizeof(double));
read(fd,Cai,N*N*H*sizeof(double));
read(fd,Vf,N*N*H*sizeof(double));
close(fd);*/
}
double SolveEquations(double *Vm, double *Vf, double *mG, double *hG, double *jG,
double *dG, double *fG, double *XG,double *Cai, double *fs_m, double *fs_f, double *fs_e,
double *f_sum, double *L_Vm, double *L_Vf,double *L_Fe1, double *L_Fe2,double *Im_e,double *If_e,
Fibroblast *FB, double *buff, double *Fe)
{
//the function solves the system for a given time MaxTime: calls all neseccary functions
int i; //counting variables
int Time;//time itarator
time_t t1,t2;
//tbb::atomic<double*> error; //error estimatoin parameter for poisson solver
//cleaning out the auxilary arrays
for (i=0; i<N*N*H; i++)
{
Im_e[i] = If_e[i] = f_sum[i] = L_Fe1[i] = L_Fe2[i] = L_Vm[i] = L_Vf[i] = 0;
}
bool DrawEvent = false;
dVm = new double[N*N*H];
dVf = new double[N*N*H];
voxels_m = new double**[N];
voxels_f = new double**[N];
for (int i=0; i<N; i++)
{
voxels_m[i] = new double*[N];
voxels_f[i] = new double*[N];
for (int j=0; j<N; j++)
{
voxels_m[i][j] = new double[H];
voxels_f[i][j] = new double[H];
}
}
time(&t1);
for (Time=1; true; Time++)
{
if (Time/300*300 == Time)
{
Excite(Vm);
Excite(Vm);
//Excite(Vm);
}
// Get_f_sum(Vm,Vf,fs_m,fs_f,fs_e,f_sum,L_Vm,L_Vf);// - this is the serial version of the function calculaing
// the total currents entering the cells. Now it is substituted by the parallel_for:GetTotalCurrent
parallel_for(blocked_range<int>(0,N*N*H),GetTotalCurrent(Vm,Vf,fs_m,fs_f,fs_e,f_sum,L_Vm,L_Vf));
//SolvePoisson(f_sum,N,H,h,sm_y+sf_y+se_y,sm_x+sf_x+se_x,sm_z+sf_z+se_z,buff,Fe);// - this is the serial poisson equation solver.
// the do-while cycle and two parallel_for sections inside produce the parallel solution of the 3 dimensional poisson equation
//using iterative scheme with the accuracy 0.01;
do
{
parallel_for(blocked_range<int>(0,N*N*H),PoissonSolver(f_sum,sm_y+sf_y+se_y,sm_x+sf_x+se_x,sm_z+sf_z+se_z,buff,Fe));
parallel_for(blocked_range<int>(0,N*N*H),SolvePoissonUpdate(buff,Fe));
}
while (error > 0.01);
//Get_external_currents(Vm,Vf,Fe,fs_m,fs_f,Im_e,If_e,L_Vm,L_Vf,L_Fe1,L_Fe2);// - this is the serial function calculating the ionic current
//going through the each cell. The parallel version of it is the parallel_for:GetExternalCurrents.
parallel_for(blocked_range<int>(0,N*N*H),GetExternalCurrents(Vm,Vf,Fe,fs_m,fs_f,Im_e,If_e,L_Vm,L_Vf,L_Fe1,L_Fe2));
//ANNOTATE_SITE_BEGIN(MySite1);
//for (i=0; i<N*N*H; i++)
//{
// ANNOTATE_TASK_BEGIN(Task1);
// OdeSolve_myocyte(Vm[i],mG[i],hG[i],jG[i],dG[i],fG[i],XG[i],Cai[i]);
// OdeSolve_fib(i,Vf,FB);
// ANNOTATE_TASK_END(Task1);
//}
//ANNOTATE_SITE_END(MySite1);
//ANNOTATE_SITE_BEGIN(MySite2);
//for (i=0; i<N*N*H; i++) //this commented section integrates the cells' individuals dynamics over the time step "dt"
//{
// ANNOTATE_TASK_BEGIN(Task2);//(first "for" cycle). Then the coupling between the cells is added based on the previously calculated
// Vm[i]+=dt*Im_e[i]; //currents (the second "for" cycle).
// Vf[i]+=dt*If_e[i]; //The same is done by the parallel_for:Psolve
// ANNOTATE_TASK_END(Task2);
//}
//ANNOTATE_SITE_END(MySite2);
parallel_for(blocked_range<int>(0,N*N*H),Psolve(Vm,mG,hG,jG,dG,fG,XG,Cai,Vf,FB,Im_e,If_e,dVm,dVf));
if ((Time/Redisplay_time*Redisplay_time == Time) &&(Time >0))
{
DrawEvent = true;
//printf("time=%i\n",Time);
}
//else
if (DrawEvent&&DrawReady)
{
DrawEvent = false;
//vertices_m.clear();
//getVoxels_d(Vm,N, N, H, voxels);
parallel_for(blocked_range3d<int>(0,N,0,N,0,H),getVoxels(Vm,voxels_m));
parallel_for(blocked_range3d<int>(0,N,0,N,0,H),getVoxels(Vf,voxels_f));
//vertices_m = runMarchingCubes_d(voxels,dVm, -60.0);
//vertices_f.clear();
//getVoxels_d(Vf,N, N, H, voxels);
//vertices_f = runMarchingCubes_d(voxels,dVf, -60.0);
//printf("vertices_m.size=%i\t",vertices_m.size());
//printf("vertices_f.size=%i\t",vertices_f.size());
DrawReady = false;
glutPostRedisplay();
}
time(&t2);
speed = double(Time)/double(t2-t1);
}
return 1.;
}
void OdeSolve_myocyte(double &Vm, double &mG, double &hG, double &jG, double &dG, double &fG, double &XG, double &Cai, double &dVm)
{
//this function performs integration of the myocite cell over the time step "dt" possibly subdividing this time step inte several substeps
double vd;
dVm = Vm;
vd=VFunction(Vm,mG,hG,jG,dG,fG,XG,Cai);
Cai += dt*CaiFunction(Cai,dG,fG,Vm);
mG = mFunction(Vm,mG,dt);
hG = hFunction(Vm,hG,dt);
jG = jFunction(Vm,jG,dt);
dG = dFunction(Vm,dG,dt);
fG = fFunction(Vm,fG,dt);
XG = XFunction(Vm,XG,dt);
Vm += dt*vd;
dVm = (Vm-dVm)/dt;
}
inline int Substeps(double &vd)
{
// subdivides the time step "dt" into "k" substeps proportionally to the value of the first time derivative of the cell voltage "vd"
const int kmax=100;
int k;
const int k0=vd>0. ? 5 : 1;
k=k0+(int)fabs(vd);
return k<kmax ? k : kmax;
}
void OdeSolve_fib(int i, double *V, Fibroblast *FB)
{
//integrates the fibroblast dynamics over the time step "dt"
double dV, dC0, dC1, dC2, dC3, dC4, dO;
dV = dt*Vf_function(V[i],FB[i].O_shkr);
dC0 = dt*C0_function(FB[i].C0,FB[i].C1,V[i]);
dC1 = dt*C1_function(FB[i].C0,FB[i].C1,FB[i].C2,V[i]);
dC2 = dt*C2_function(FB[i].C1,FB[i].C2,FB[i].C3,V[i]);
dC3 = dt*C3_function(FB[i].C2,FB[i].C3,FB[i].C4,V[i]);
dC4 = dt*C4_function(FB[i].C3,FB[i].C4,FB[i].O_shkr,V[i]);
dO = dt*O_function(FB[i].C4,FB[i].O_shkr);
V[i] += dV;
FB[i].C0 += dC0;
FB[i].C1 += dC1;
FB[i].C2 += dC2;
FB[i].C3 += dC3;
FB[i].C4 += dC4;
FB[i].O_shkr += dO;
}
void Get_f_sum(double *Vm, double *Vf, double *fs_m, double *fs_f, double *fs_e, double *f_sum, double *L_Vm, double *L_Vf)
{
// serial function for calculation the total interdomain current
// NOT USED IN THE PARALLEL CASE
int i;
int n1, n2, n3;
int rn, ln, un, dn, tn, bn;
for (i=0; i<N*N*H; i++) //inner grid points
{
n3 = i/(N*N);
n1 = (i-N*N*n3)/N;
n2 = i-n1*N-N*N*n3;
if (n1 > 0) ln = n3*N*N + (n1-1)*N + n2;
else ln = i;
if (n1 < N-1) rn = n3*N*N + (n1+1)*N + n2;
else rn = i;
if (n2 > 0) un = n3*N*N + n1*N + n2 - 1;
else un = i;
if (n2 < N-1) dn = n3*N*N + n1*N + n2 + 1;
else
dn = i;
if (n3 > 0)
tn = (n3-1)*N*N + n1*N + n2;
else
tn = i;
if (n3 < H-1) bn = (n3+1)*N*N + n1*N + n2;
else bn = i;
L_Vm[i] = 1e-3*(sm_x*(Vm[rn]+Vm[ln]-2.*Vm[i])+sm_y*(Vm[un]+Vm[dn]-2.*Vm[i])+sm_z*(Vm[tn]+Vm[bn]-2.*Vm[i]))/(h*h);
L_Vf[i] = 1e-3*(sf_x*(Vf[rn]+Vf[ln]-2.*Vf[i])+sf_y*(Vf[un]+Vf[dn]-2.*Vf[i])+sf_z*(Vf[tn]+Vf[bn]-2.*Vf[i]))/(h*h);
}
for (i=0; i<N*N*H; i++)
f_sum[i] = -L_Vm[i]-L_Vf[i]-fs_m[i]-fs_f[i]-fs_e[i];
}
void Get_external_currents(double *Vm, double *Vf, double *Fe, double *fs_m, double *fs_f, double *Im_e, double *If_e, double *L_Vm, double *L_Vf, double *L_Fe1, double *L_Fe2)
{
//Calculates the external currents for fibroblasts and myocites
// NOT USED IN THE PARALLEL CASE
int i;
int n1, n2, n3;
int rn, ln, un, dn, vn, bn, s;
for (i=0;i<N*N*H; i++)
{
n3 = i/(N*N);
n1 = (i-N*N*n3)/N;
n2 = i-n1*N-N*N*n3;
n3++;n1++;n2++;
rn = n3*(N+2)*(N+2) + (n1+1)*(N+2) + n2;
ln = n3*(N+2)*(N+2) + (n1-1)*(N+2) + n2;
un = n3*(N+2)*(N+2) + n1*(N+2) + n2 - 1;
dn = n3*(N+2)*(N+2) + n1*(N+2) + n2 + 1;
vn = (n3-1)*(N+2)*(N+2) + n1*(N+2) + n2;
bn = (n3+1)*(N+2)*(N+2) + n1*(N+2) + n2;
s = n3*(N+2)*(N+2) + n1*(N+2) + n2;
L_Fe1[i] = 1e-3*(sm_x*(Fe[rn]+Fe[ln]-2.*Fe[s])+sm_y*(Fe[un]+Fe[dn]-2.*Fe[s])+sm_z*(Fe[vn]+Fe[bn]-2.*Fe[s]))/(h*h);
L_Fe2[i] = 1e-3*(sf_x*(Fe[rn]+Fe[ln]-2.*Fe[s])+sf_y*(Fe[un]+Fe[dn]-2.*Fe[s])+sf_z*(Fe[vn]+Fe[bn]-2.*Fe[s]))/(h*h);
Im_e[i] = (L_Vm[i]+L_Fe1[i]+fs_m[i]-Betta_myo_fib*(Vm[i]-Vf[i])/(1000.*R_myo_fib))/Betta_myo;
If_e[i] = (L_Vf[i]+L_Fe2[i]+fs_f[i]+Betta_myo_fib*(Vm[i]-Vf[i])/(1000.*R_myo_fib))/Betta_fib;
}
}
void SolvePoisson(double *f_sum, int N, int H, double h, double ssx, double ssy, double ssz, double *buff, double *Fe)
{
//performs the serial sulution of the 3dimensional poisson equation using iterative schem with error level of 0.01
double error, er;
int i;
int n1,n2,n3;
int rn, ln, un, dn, vn, bn;
//ANNOTATE_SITE_BEGIN(MySite2);
do
{
error = 0;
for (i=0;i<N*N*H; i++)
{
// ANNOTATE_TASK_BEGIN(taskP);
n3 = i/(N*N);
n1 = (i-N*N*n3)/N;
n2 = i-n1*N-N*N*n3;
n3++;n1++;n2++;
rn = n3*(N+2)*(N+2) + (n1+1)*(N+2) + n2;
ln = n3*(N+2)*(N+2) + (n1-1)*(N+2) + n2;
un = n3*(N+2)*(N+2) + n1*(N+2) + n2 - 1;
dn = n3*(N+2)*(N+2) + n1*(N+2) + n2 + 1;
vn = (n3-1)*(N+2)*(N+2) + n1*(N+2) + n2;
bn = (n3+1)*(N+2)*(N+2) + n1*(N+2) + n2;
buff[i] = (ssz*(Fe[vn]+Fe[bn])+ssx*(Fe[rn]+Fe[ln])+ssy*(Fe[un]+Fe[dn])-f_sum[i]*h*h)/(2*(ssx+ssy+ssz));
er = fabs(buff[i]-Fe[n3*(N+2)*(N+2)+n1*(N+2)+n2]);
if (er > error) error = er;
//ANNOTATE_TASK_END(taskP);
}
for (i=0;i<N*N*H; i++)
{
// ANNOTATE_TASK_BEGIN(taskP1);
n3 = i/(N*N);
n1 = (i-N*N*n3)/N;
n2 = i-n1*N-N*N*n3;
n3++;n1++;n2++;
Fe[n3*(N+2)*(N+2)+n1*(N+2)+n2] = buff[i];
// ANNOTATE_TASK_END(taskP1);
}
}
while (error > 0.01);
//ANNOTATE_SITE_END(MySite2);
}