

Version: Tentative 0.10

TECHNICAL SPECIFICATION

MODEL NO: ES108FC1

The content of this information is subject to be changed without notice. Please contact E Ink or its agent for further information.

Customer's Confirmation

Customer

Date

By

E Ink's Confirmation

Approved By

Confirmed By

Prepared By

Revision History

Rev.	Issued Da	te Revised C	ontents
Tentative 0.10	July.03.201	7 New	

The information contained herein is the exclusive property of E Ink Holdings Inc. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of E Ink Holdings Inc. PAGE:2

TECHNICAL SPECIFICATION

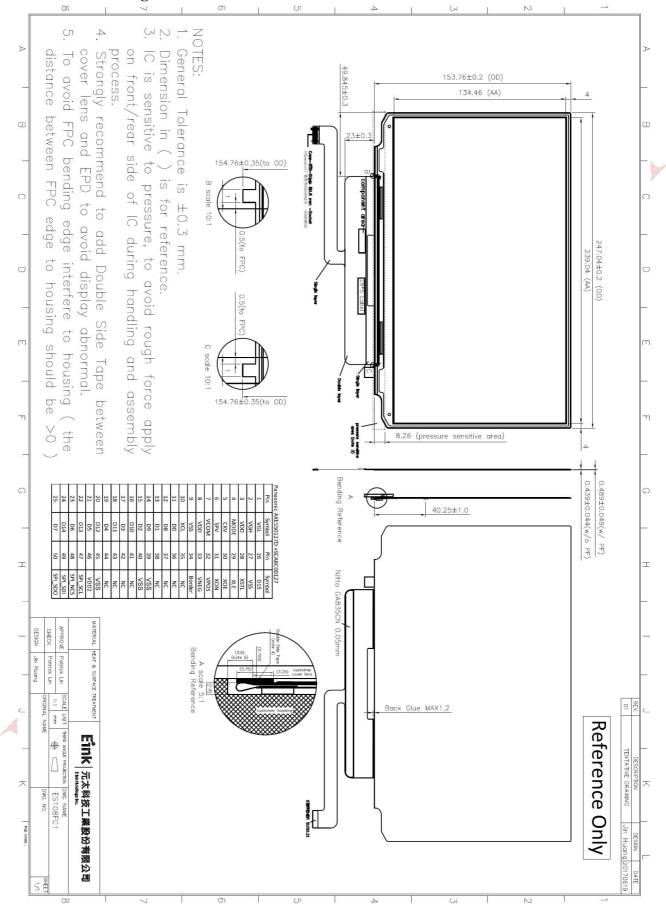
CONTENTS

<i>NO</i> .	ITEM	PAGE	
-	Cover	1	
-	Revision History	2	•
-	Contents	3	
1	Application	4	
2	Features	4	
3	Mechanical Specifications	4	X
4	Mechanical Drawing of EPD module	5	
5	Input/Output Terminals	6	
6	Electrical Characteristics	8	
7	Power on Sequence	12	
8	Discharge time Sequence	14	
9	Optical Characteristics	15	
10	Handling, Safety and Environment Requirements	18	
11	Reliability test	18	
12	Border definition and scan direction	19	
13	Block Diagram	19	
14	Packing	20	

1. General Description

ES108FC1 is a reflective electrophoretic E Ink® technology display module based on plastic active matrix TFT substrate. It has 10.8" active area with 1920(H) x 1080(V) pixels, the display is capable to display images at 2-16 gray levels (1-4 bits) depending on the display controller and the associated waveform file it used.

2. Features

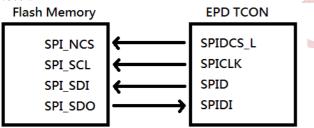

- High contrast reflective/electrophoretic technology
- ➤ 1920(H) x 1080(V) display
- ➢ High reflectance
- Ultra wide viewing angle
- ➢ Ultra low power consumption
- Pure reflective mode
- ➢ Bi-stable
- Commercial temperature range
- Landscape pin out. Portrait mode scan.
- Plastic substrate.

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	10.8	Inch	
Display Resolution	1920(H) x 1080(V)	Pixel	
Active Area	239.04(H) x 134.46(V)	mm	
Pixel Pitch	0.1245(H) x 0.1245(V)	mm	
Pixel Configuration	Square		
Outline Dimension	247.04(H) x 153.76(V) × 0.439 (D)	mm	
Module Weight	TBD	g	
Number of Gray	16 Gray Level (monochrome)		
Display operating mode	Reflective mode		
Surface treatment	Non		

4.Mechanical Drawing of EPD Module

5.Input/Ouput Terminals


5-1)Pin out list

FPC connector: Panasonic AXE550127D

Pin No	Signal	Description	Notes
1	VGL	Negative power supply gate driver	
2	VGH	Positive power supply gate driver	
3	VDD	Digital power supply drivers	3.3V
4	MODE	Output mode selection gate driver	
5	CKV	Clock gate driver	
6	SPV	Start pulse gate driver	K V
7	VCOM	Common connection	NY'
8	VDD	Digital power supply drivers	3.3V
9	VSS	Ground	
10	XCL	Clock source driver	
11	D0	Data signal source driver	
12	D8	Data signal source driver	
13	D1	Data signal source driver	
14	D9	Data signal source driver	
15	D2	Data signal source driver	
16	D10	Data signal source driver	
17	D3	Data signal source driver	
18	D11	Data signal source driver	
19	D4	Data signal source driver	
20	D12	Data signal source driver	
21	D5	Data signal source driver	
22	D13	Data signal source driver	
23	D6	Data signal source driver	
24	D14	Data signal source driver	
25	D7	Data signal source driver	
26	D15	Data signal source driver	
27	VSS	Ground	
28	XSTL	Start pulse source driver	
29	XLE	Latch enable source driver	
30	XOE	Output enable source driver	
31	XON	Test ping	Note 5-2.
32	VPOS	Positive power supply source driver	

Ĩ	nk	元太科技 Elink Holdings		ES108FC1	_
	33	VNEG	Negative power supply source driver		
	34	Border	Border connection		
	35	NC	NC		
	36	NC	NC		
	37	NC	NC		
	38	NC	NC		
	39	VSS	Ground		
	40	VSS	Ground		
	41	NC	NC		
	42	NC	NC		
	43	NC	NC		
	44	NC	NC		
	45	VSS	Ground		
	46	VDD2	SPI flash power supply	1.8V	
	47	SPI_SCL	Serial Data Clock for Flash memory	Note 5-1	
	48	SPI_NCS	Chip Select for Flash memory	Note 5-1	
	49	SPI_SDI	Serial Data Input for Flash memory	Note 5-1	
	50	SPI_SDO	Serial Data Output for Flash memory	Note 5-1	

Note 5-1

Note 5-2

Please connect to VDD voltage by 10K resistance.

6.Electrical Characteristics 6-1) Absolute maximum rating

Parameter	Symbol	Rating	Unit
Logic Supply Voltage	VDD	-0.3 to +5	V
SPI Supply Voltage	VDD2	-0.5 to +2.5	V
Positive Supply Voltage	V _{POS}	-0.3 to +18	V
Negative Supply Voltage	$V_{\rm NEG}$	+0.3 to -18	V
Max .Drive Voltage Range	V_{POS} - V_{NEG}	36	V
Supply Voltage	VGH	-0.3 to VGL+50V	V
Supply Voltage	VGL	-25 to +0.3	V
Supply Range	VGH-VGL	+50	V 🔴
Operating Temp. Range	TOTR	0 to +50	°C
Storage Temperature	TSTG	-25 to +70	°C
6-2) Panel DC characteristics			~

6-2) Panel DC characteristics

Parameter	Symbol	Conditions	Min 人	Тур	Max	Unit
Signal ground	V _{ss}		-	0	-	V
Y Y Y 1 1	V_{DD}		3.0	3.3	3.6	V
Logic Voltage supply	I _{VDD}	V _{DD} =3.3V		-	-	mA
	V_{DD2}		1.65	1.8	1.95	V
SPI Voltage supply	I _{VDD2}	V _{DD} =1.8V	<u> </u>	-	-	mA
Cata Nanatian and In	V_{GL}		-20.5	-20	-20.5	V
Gate Negative supply	I _{GL}	V _{GL} =-20V	-	-	-	mA
Cata Davidian ann 1	V _{GH}		27.5	28	28.5	V
Gate Positive supply	I _{GH}	$V_{GH} = 28V$	-	-	-	mA
Commo Manadiana ana 1a	V _{NEG}		-15.4	-15	-14.6	V
Source Negative supply	I _{NEG}	$V_{\text{NEG}} = -15 V$	-	-	-	mA
Comme De citizer erem las	V _{POS}	·	14.6	15	15.4	V
Source Positive supply	I _{POS}	$V_{POS} = 15V$	-	-	-	mA
Asymmetry source	V _{Asym}	V _{POS} +V _{NEG}	-800	0	800	mV
	V _{COM}		-4	Adjusted	-1	V
Common voltage	I _{COM}		-	-	-	mA
Power panel	Р		-	-	-	mW
Standby power panel	P _{STBY}		-	-	-	mW
Operating temperature			0	-	50	°C
Storage temperature			-25	-	70	°C

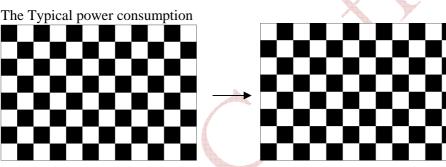
The information contained herein is the exclusive property of E Ink Holdings Inc. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of E Ink Holdings Inc. PAGE:8

The maximum power consumption is measured using standard waveform with following pattern transition: from pattern of repeated 1 consecutive black scan lines followed by 1 consecutive white scan line to that of repeated 1 consecutive white scan lines followed by 1 consecutive black scan lines. (Note 6-1)

- The Typical power consumption is measured using standard waveform with following pattern transition: from checkers with 200dot black and 200dot white to the converse checkers. (Note 6-2)
- The standby power is the consumed power when the panel controller is in standby mode.
- Vcom is recommended to be set in the range of assigned value ± 0.1 V.

Note 6-1

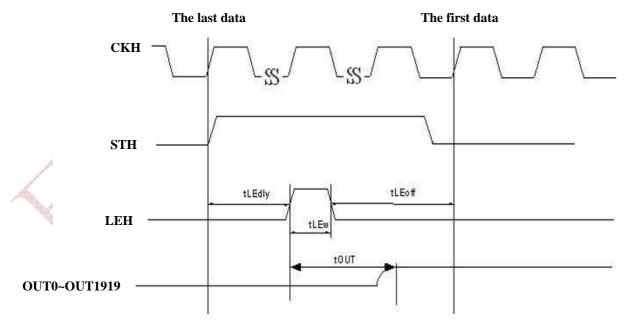
Fink


The maximum power consumption

元太科技

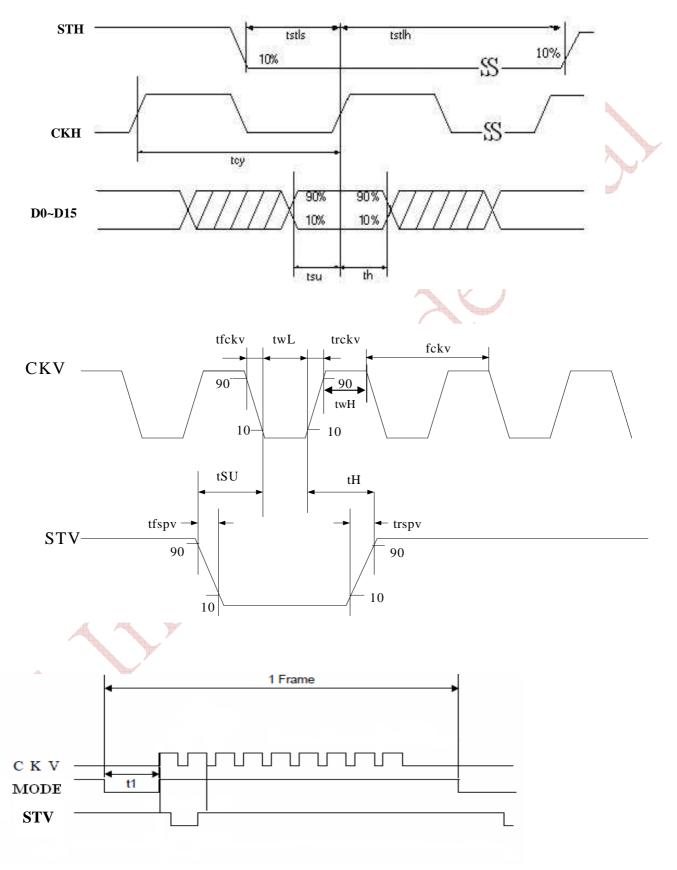
E Ink Holdings

Note 6-2



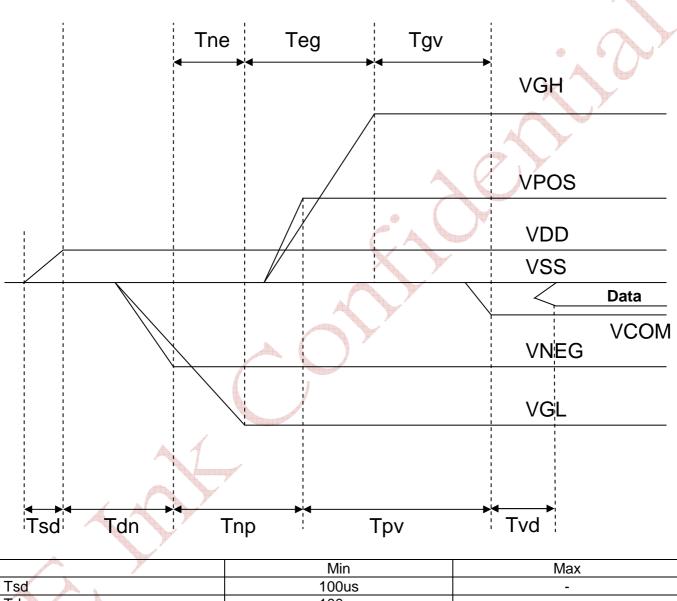
6-3)Panel AC characteristics

VDD=3.0V to 3.6V, unless otherwise specified.


Parameter	Symbol	Min.	Typ.	Max.	Unit
Clock frequency	fckv	-	-	200	kHz
Minimum "L" clock pulse width	twL	0.5	-	-	us
Minimum "H" clock pulse width	twH	0.5	-	-	us
Clock rise time	trckv	-	-	100	ns
Clock fall time	tfckv	-	-	100	ns
STV setup time	tSU	0.5 x tcy	-	0.8 x tcy	ns
STV hold time	tH	0.5 x tcy	-	300 x tcy	ns
Pulse rise time	trspv	-	-	100	ns
Pulse fall time	tfspv	-	-	100	ns
Clock CKH cycle time	tcy	16.7	50	DC	ns
D0 D7 setup time	tsu	8	-) ×_	ns
D0 D7 hold time	th	8		-	ns
STH setup time	tstls	8	Y	-	ns
STH hold time	tstlh	8	-	-	ns
LEH on delay time	tLEdly >	10.5xtcy	-	-	ns
LEH high-level pulse width	tLEw	300	-	-	ns
LEH off delay time	tLEoff	200	-	-	ns
Output setting time to +/- 30mV(C _{load} =200pF)	tout	-	-	20	us

OUTPUT LATCH CONTROL SIGNALS

CLOCK & DATA TIMING

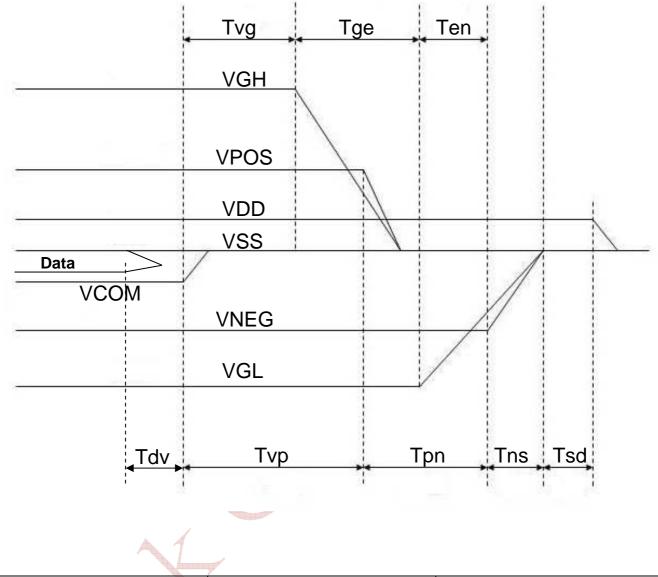


7. Power on Sequence

Power Rails must be sequenced in the following order : 1. VSS \rightarrow VDD \rightarrow VNEG \rightarrow VPOS (Source driver) \rightarrow VCOM

2. VSS \rightarrow VDD \rightarrow VGL \rightarrow VGH (Gate driver)

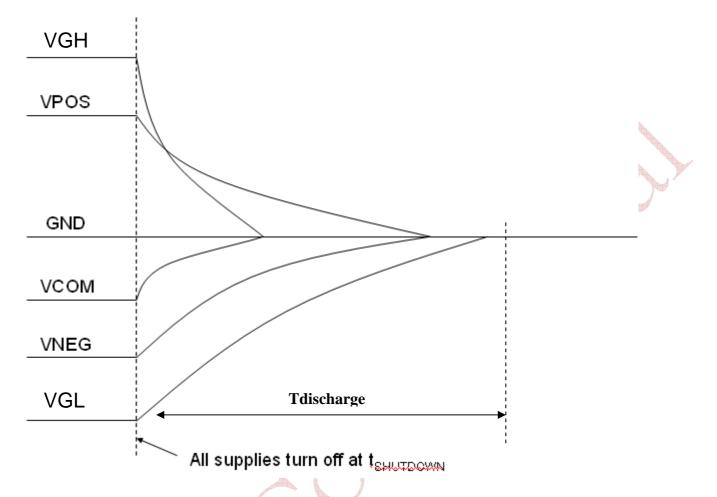
POWER ON



Tsd	100us	-
Tdn	100us	-
Tnp	1000us	-
Тру	100us	-
Tvd	100us	-
Tne	Ous	-
Teg	1000us	-
Tgv	100us	-

The information contained herein is the exclusive property of E Ink Holdings Inc. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of E Ink Holdings Inc. PAGE:12

POWER DOWN



	Min	Max
Tdv	$100\mu\mathrm{s}$	-
Тvp	0 μ s	-
Tpn	0 μ s	-
Tns	-	1000ms
Tsd	$100\mu\mathrm{s}$	-
Tvg	0 μ s	-
Tge	0 μ s	-
Ten	$0\mu\mathrm{s}$	-

ES108FC1

8. Discharge time Sequence

Note8-1 : Supply voltages decay through pulldown resistors.

Note8-2 : VGL must remain negative of all other supplies during decay period.

8-1) Refresh Rate

	Min	Max
Refresh Rate	-	85Hz

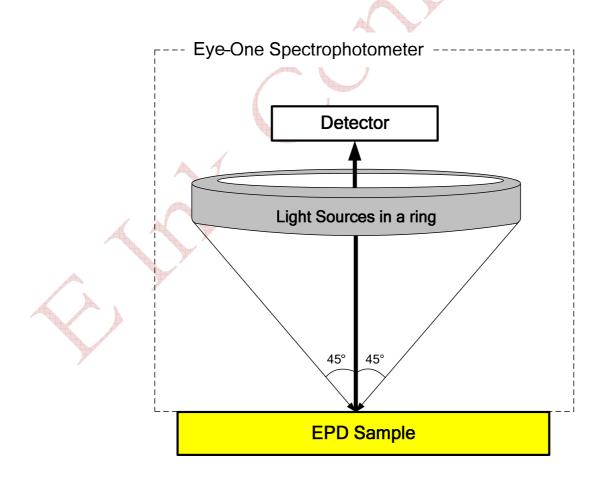
9. Optical characteristics

9-1)Specifications

Measurements are made with that the illumination is at an angle of 45 degrees from the perpendicular at the center of sample surface, the detector is perpendicular unless otherwise specified.

							$T = 25^{\circ}C$
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT	Note
R	Reflectance	White	35	46	-	%	Note 9-1
Gn	N _{th} Grey Level	-	-	DS+(WS-DS)×n/(m-1)	-	L*	
CR	Contrast Ratio	-	12	16	_ ●	6	\mathcal{P}

WS: White state, DS: Dark state, Gray state from Dark to White :DS \ G1 \ G2... \ Gn... \ Gm-2 \ WS


m: $4 \cdot 8 \cdot 16$ when $2 \cdot 3 \cdot 4$ bits mode

Note 9-1: Luminance meter : Eye - One Pro Spectrophotometer

9-2)Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (Rl) and the reflectance in a dark area (Rd):

CR = Rl/Rd

The information contained herein is the exclusive property of E Ink Holdings Inc. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of E Ink Holdings Inc. PAGE:15

9-3)Reflection Ratio

The reflection ratio is expressed as:

 $R = Reflectance \ Factor_{white \ board} \quad x \quad (\ L_{center} \ / \ L_{white \ board} \)$

 L_{center} is the luminance measured at center in a white area (R=G=B=1). $L_{white board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

10.HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status			
Product specification	This data sheet contains final product specifications.		
Limiting values			
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC			
134). Stress above one or more of the limiting values may cause permanent damage to the			
device. These are stress ratings only and operation of the device at these or at any other			
conditions above those given in the Characteristics sections of the specification is not implied.			
Exposure to limiting values for extended periods may affect device reliability.			
Application information			
Where application information is given, it is advisory and does not form part of the			

where application information is given, it is advisory and does not form part of the specification.

The information contained herein is the exclusive property of E Ink Holdings Inc. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of E Ink Holdings Inc. PAGE:17

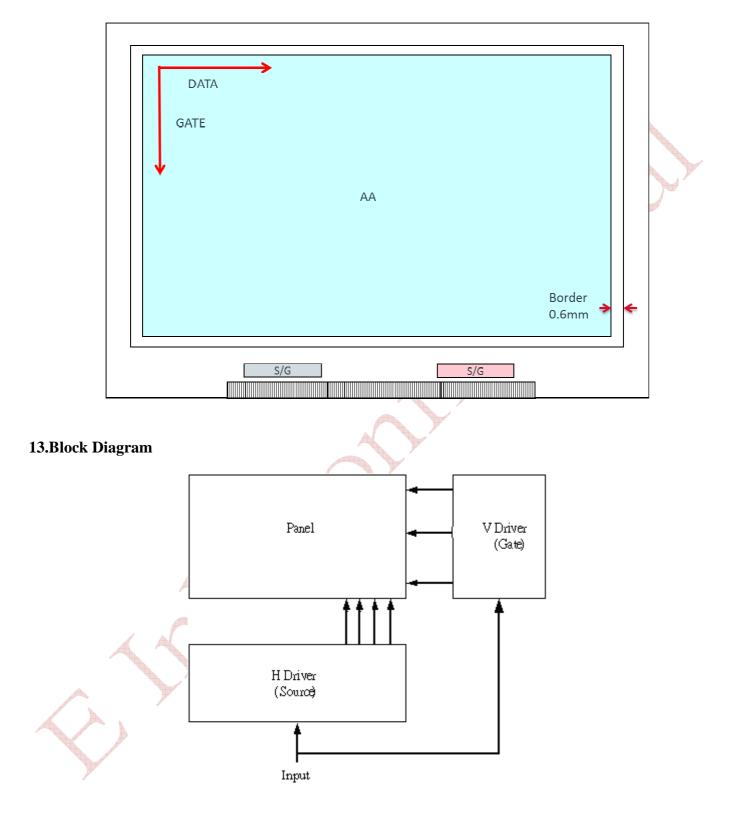
11. Reliability test

	TEST	CONDITION	METHOD
1	High-Temperature Operation	$T = +50^{\circ}C$, $RH = 30\%$ for 72 hrs	IEC 60 068-2-2Bp
2	Low-Temperature Operation	$T = 0^{\circ}C$ for 72 hrs	IEC 60 068-2-2Ab
3	High-Temperature Storage	T = +60°C, RH=25% for 72 hrs (Test In White Pattern)	IEC 60 068-2-2Bp
4	Low-Temperature Storage	T = -25°C for 72 hrs (Test In White Pattern)	IEC 60 068-2-1Ab
5	High-Temperature, High-Humidity Operation	$T = +40^{\circ}C$, $RH = 90\%$ for 72 hrs	IEC 60 068-2-3CA
6	High Temperature, High- Humidity Storage	$T = +60^{\circ}C$, RH=80% for 72 hrs (Test In White Pattern)	IEC 60 068-2-3CA
7	Temperature Cycle	-25°C → +70°C, 50 Cycles 30mins 30 mins (Test In White Pattern)	IEC 60 068-2-14
8	Solar Radiation test	765 W/m ² for 72hrs,40°C (Test In White Pattern)	IEC60 068-2-5Sa
9	Package Vibration	1.04G, Frequency: 10~500Hz Direction: X,Y,Z Duration: 1 hours in each direction	Full packed for shipment
10	Package Drop Impact	Drop from height of 122 cm on concrete surface. Drop sequence: 1 corner, 3 edges, 6 faces One drop for each.	Full packed for shipment
11	Electrostatic Effect (non-operating)	(Air mode)+/-12kV; (Test in active area.) (Contact mode)+/-8kV (Test in active area.)	IEC 62179, IEC 62180

Actual EMC level to be measured on customer application

Note : The protective film must be removed before temperature test.

[Criteria]


In the standard conditions, there is not display function NG issue occurred. (Including : line defect, no image) All the cosmetic specification is judged before the reliability stress.

The information contained herein is the exclusive property of E Ink Holdings Inc. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of E Ink Holdings Inc. PAGE:18

ES108FC1

12. Border definition and scan direction

14.Packing TBD