-
Notifications
You must be signed in to change notification settings - Fork 233
/
Copy pathconfig.py
executable file
·69 lines (51 loc) · 2.57 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import importlib
import random
import cv2
import numpy as np
from dataset import get_dataset
class Config(object):
"""Configuration file."""
def __init__(self):
self.seed = 10
self.logging = True
# turn on debug flag to trace some parallel processing problems more easily
self.debug = False
model_name = "hovernet"
model_mode = "original" # choose either `original` or `fast`
if model_mode not in ["original", "fast"]:
raise Exception("Must use either `original` or `fast` as model mode")
nr_type = 5 # number of nuclear types (including background)
# whether to predict the nuclear type, availability depending on dataset!
self.type_classification = True
# shape information -
# below config is for original mode.
# If original model mode is used, use [270,270] and [80,80] for act_shape and out_shape respectively
# If fast model mode is used, use [256,256] and [164,164] for act_shape and out_shape respectively
aug_shape = [540, 540] # patch shape used during augmentation (larger patch may have less border artefacts)
act_shape = [270, 270] # patch shape used as input to network - central crop performed after augmentation
out_shape = [80, 80] # patch shape at output of network
if model_mode == "original":
if act_shape != [270,270] or out_shape != [80,80]:
raise Exception("If using `original` mode, input shape must be [270,270] and output shape must be [80,80]")
if model_mode == "fast":
if act_shape != [256,256] or out_shape != [164,164]:
raise Exception("If using `fast` mode, input shape must be [256,256] and output shape must be [164,164]")
self.dataset_name = "consep" # extracts dataset info from dataset.py
self.log_dir = "logs/" # where checkpoints will be saved
# paths to training and validation patches
self.train_dir_list = [
"train_patches_path"
]
self.valid_dir_list = [
"valid_patches_path"
]
self.shape_info = {
"train": {"input_shape": act_shape, "mask_shape": out_shape,},
"valid": {"input_shape": act_shape, "mask_shape": out_shape,},
}
# * parsing config to the running state and set up associated variables
self.dataset = get_dataset(self.dataset_name)
module = importlib.import_module(
"models.%s.opt" % model_name
)
self.model_config = module.get_config(nr_type, model_mode)