-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-quasiatoms.tex
52 lines (40 loc) · 1.79 KB
/
chap-quasiatoms.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
\chapter{Quasi-atoms}
\begin{defn}
\emph{Quasi-atoms} funcoid~$\mathscr{A}$ is the funcoid $A\rightarrow \atoms^{\mathfrak{A}} A$ defined by the formula
$\rsupfun{\mathscr{A}} X = \atoms^{\mathfrak{A}} X$.
\end{defn}
This really defines a funcoid because $\atoms^{\mathfrak{A}} \bot = \emptyset$ and
$\atoms^{\mathfrak{A}}(X\cup Y) = \atoms^{\mathfrak{A}}X\cup\atoms^{\mathfrak{A}}Y$.
\begin{obvious}
$\mathscr{A}$ is a co-complete funcoid.
\end{obvious}
\begin{prop}
$\rsupfun{\mathscr{A}^{-1}} Y = \bigsqcup Y$.
\end{prop}
\begin{proof}
$Y \nasymp \left\langle \mathscr{A} \right\rangle^{\ast} X \Leftrightarrow Y
\nasymp \atoms^{\mathfrak{A}} X \Leftrightarrow \exists x \in
\atoms^{\mathfrak{A}} X, y \in Y : x \nasymp y \Leftrightarrow \exists y
\in Y : X \nasymp y \Leftrightarrow \text{(because $X$ is a principal filter)}
\Leftrightarrow X \nasymp \bigsqcup Y$.
\end{proof}
Note
$\rsupfun{\mathscr{A}} \mathcal{X} =
\bigsqcap^{\mathscr{F}}_{X \in \up \mathcal{X}}
\atoms^{\mathfrak{A}} X$;
$\rsupfun{\mathscr{A}^{-1}} \mathcal{Y} =
\bigsqcap^{\mathscr{F}}_{Y \in \up \mathcal{Y}} \bigsqcup Y$
($\mathcal{Y}$ is filter on the set of ultrafilters).
Can $\atoms^{\mathfrak{A}} \mathcal{X}$ be restored knowing $\supfun{\mathscr{A}} \mathcal{X}$?
Can $\bigsqcup \mathcal{Y}$ be restored knowing $\supfun{\mathscr{A}^{-1}} \mathcal{X}$?
\begin{prop}
(Provided that~$A$ is infinite) $\mathscr{A}$ is not complete.
\end{prop}
\begin{proof}
Take a nonprincipal ultrafilter~$x$. Then $\rsupfun{\mathscr{A}^{-1}}\{x\} = \bigsqcup\{x\} = x$
is a nonprincipal filter.
\end{proof}
\begin{conjecture}
There is such filter~$\mathcal{X}$ that $\rsupfun{\mathscr{A}} \mathcal{X}$ is non-principal.
\end{conjecture}
Does quasi-atoms funcoid define a more elegant replacement of $\atoms^{\mathfrak{A}}$? Does this concept have any use?