-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-multi.tex
4357 lines (3952 loc) · 211 KB
/
chap-multi.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{\label{multi}Multifuncoids and staroids}
\section{Product of two funcoids}
\subsection{Definition}
\begin{defn}
\index{category!quasi-invertible}I will call a \emph{quasi-invertible
category} a partially ordered dagger category such that it holds
\begin{equation}
g\circ f\nasymp h\Leftrightarrow g\nasymp h\circ f^{\dagger}\label{invertible}
\end{equation}
for every morphisms $f\in\Hom(A,B)$, $g\in\Hom(B,C)$, $h\in\Hom(A,C)$,
where $A$, $B$, $C$ are objects of this category.
\end{defn}
Inverting this formula, we get $f^{\dagger}\circ g^{\dagger}\nasymp h^{\dagger}\Leftrightarrow g^{\dagger}\nasymp f\circ h^{\dagger}$.
After replacement of variables, this gives: $f^{\dagger}\circ g\nasymp h\Leftrightarrow g\nasymp f\circ h$.
\begin{xca}
Prove that every ordered groupoid is quasi-invertible category if
we define the dagger as the inverse morphism.
\end{xca}
As it follows from above, the categories $\mathbf{Rel}$ of binary
relations (proposition~\ref{rel-cross}), $\mathsf{FCD}$ of funcoids
(theorem~\ref{fcd-cross}) and $\mathsf{RLD}$ of reloids (theorem~\ref{rld-cross})
are quasi-invertible (taking $f^{\dagger}=f^{-1}$). Moreover the
category of pointfree funcoids between lattices of filters on boolean
lattices is quasi-invertible (theorem \ref{qi-bool}).
\begin{defn}
\index{product!cross-composition}The \emph{cross-composition product}
of morphisms $f$ and $g$ of a quasi-invertible category is the pointfree
funcoid $\Hom(\Src f,\Src g)\rightarrow\Hom(\Dst f,\Dst g)$ defined
by the formulas (for every $a\in\Hom(\Src f,\Src g)$ and $b\in\Hom(\Dst f,\Dst g)$):
\[
\supfun{f\times^{(C)}g}a=g\circ a\circ f^{\dagger}\hspace{1em}\text{and}\hspace{1em}\supfun{(f\times^{(C)}g)^{-1}}b=g^{\dagger}\circ b\circ f.
\]
\end{defn}
We need to prove that it is really a pointfree funcoid that is that
\[
b\nasymp\supfun{f\times^{(C)}g}a\Leftrightarrow a\nasymp\supfun{(f\times^{(C)}g)^{-1}}b.
\]
This formula means $b\nasymp g\circ a\circ f^{\dagger}\Leftrightarrow a\nasymp g^{\dagger}\circ b\circ f$
and can be easily proved applying formula (\ref{invertible})
twice.
\begin{prop}
$a\suprel{f\times^{(C)}g}b\Leftrightarrow a\circ f^{\dagger}\nasymp g^{\dagger}\circ b$.\end{prop}
\begin{proof}
From the definition.\end{proof}
\begin{prop}
$a\suprel{f\times^{(C)}g}b\Leftrightarrow f\suprel{a\times^{(C)}b}g$.\end{prop}
\begin{proof}
$f\suprel{a\times^{(C)}b}g\Leftrightarrow f\circ a^{\dagger}\nasymp b^{\dagger}\circ g\Leftrightarrow a\circ f^{\dagger}\nasymp g^{\dagger}\circ b\Leftrightarrow a\suprel{f\times^{(C)}g}b$.\end{proof}
\begin{thm}
$(f\times^{(C)}g)^{-1}=f^{\dagger}\times^{(C)}g^{\dagger}$.\end{thm}
\begin{proof}
For every morphisms $a\in\Hom(\Src f,\Src g)$ and $b\in\Hom(\Dst f,\Dst g)$
we have:
$\supfun{(f\times^{(C)}g)^{-1}}b=g^{\dagger}\circ b\circ f=\supfun{f^{\dagger}\times^{(C)}g^{\dagger}}b$.
$\supfun{((f\times^{(C)}g)^{-1})^{-1}}a=\supfun{f\times^{(C)}g}a=g\circ a\circ f^{\dagger}=\supfun{(f^{\dagger}\times^{(C)}g^{\dagger})^{-1}}a$.
\end{proof}
\begin{thm}
Let $f$, $g$ be pointfree funcoids between filters on boolean lattices.
Then for every filters $\mathcal{A}_{0}\in\mathscr{F}(\Src f)$, $\mathcal{B}_{0}\in\mathscr{F}(\Src g)$
\[
\supfun{f\times^{(C)}g}(\mathcal{A}_{0}\times^{\mathsf{FCD}}\mathcal{B}_{0})=\supfun f\mathcal{A}_{0}\times^{\mathsf{FCD}}\supfun g\mathcal{B}_{0}.
\]
\end{thm}
\begin{proof}
For every atom $a_{1}\times^{\mathsf{FCD}}b_{1}$ ($a_{1}\in\atoms^{\Dst f}$,
$b_{1}\in\atoms^{\Dst g}$) (see theorem \ref{pf-atom}) of the lattice
of funcoids we have:
\begin{align*}
a_{1}\times^{\mathsf{FCD}}b_{1}\nasymp\supfun{f\times^{(C)}g}(\mathcal{A}_{0}\times^{\mathsf{FCD}}\mathcal{B}_{0}) & \Leftrightarrow\\
\mathcal{A}_{0}\times^{\mathsf{FCD}}\mathcal{B}_{0}\suprel{f\times^{(C)}g}a_{1}\times^{\mathsf{FCD}}b_{1} & \Leftrightarrow\\
(\mathcal{A}_{0}\times^{\mathsf{FCD}}\mathcal{B}_{0})\circ f^{-1}\nasymp g^{-1}\circ(a_{1}\times^{\mathsf{FCD}}b_{1}) & \Leftrightarrow\\
\supfun f\mathcal{A}_{0}\times^{\mathsf{FCD}}\mathcal{B}_{0}\nasymp a_{1}\times^{\mathsf{FCD}}\supfun{g^{-1}}b_{1} & \Leftrightarrow\\
\supfun f\mathcal{A}_{0}\nasymp a_{1}\land\supfun{g^{-1}}b_{1}\nasymp\mathcal{B}_{0} & \Leftrightarrow\\
\supfun f\mathcal{A}_{0}\nasymp a_{1}\land\supfun g\mathcal{B}_{0}\nasymp b_{1} & \Leftrightarrow\\
\supfun f\mathcal{A}_{0}\times^{\mathsf{FCD}}\supfun g\mathcal{B}_{0}\nasymp a_{1}\times^{\mathsf{FCD}}b_{1}.
\end{align*}
Thus $\supfun{f\times^{(C)}g}(\mathcal{A}_{0}\times^{\mathsf{FCD}}\mathcal{B}_{0})=\supfun f\mathcal{A}_{0}\times^{\mathsf{FCD}}\supfun g\mathcal{B}_{0}$
because the lattice $\mathsf{pFCD}(\mathscr{F}(\Dst f),\mathscr{F}(\Dst g))$
is atomically separable (corollary \ref{pf-fcd-is-sep}).\end{proof}
\begin{cor}\label{cc-over-fcd}
$\mathcal{A}_{0}\times^{\mathsf{FCD}}\mathcal{B}_{0}\suprel{f\times^{(C)}g}\mathcal{A}_{1}\times^{\mathsf{FCD}}\mathcal{B}_{1}\Leftrightarrow\mathcal{A}_{0}\suprel f\mathcal{A}_{1}\wedge\mathcal{B}_{0}\suprel g\mathcal{B}_{1}$
for every $\mathcal{A}_{0}\in\mathscr{F}(\Src f)$, $\mathcal{A}_{1}\in\mathscr{F}(\Dst f)$,
$\mathcal{B}_{0}\in\mathscr{F}(\Src g)$, $\mathcal{B}_{1}\in\mathscr{F}(\Dst g)$
where $\Src f$, $\Dst f$, $\Src g$, $\Dst g$ are boolean lattices.\end{cor}
\begin{proof}
~
\begin{align*}
\mathcal{A}_{0}\times^{\mathsf{FCD}}\mathcal{B}_{0}\suprel{f\times^{(C)}g}\mathcal{A}_{1}\times^{\mathsf{FCD}}\mathcal{B}_{1} & \Leftrightarrow\\
\mathcal{A}_{1}\times^{\mathsf{FCD}}\mathcal{B}_{1}\nasymp\supfun{f\times^{(C)}g}\mathcal{A}_{0}\times^{\mathsf{FCD}}\mathcal{B}_{0} & \Leftrightarrow\\
\mathcal{A}_{1}\times^{\mathsf{FCD}}\mathcal{B}_{1}\nasymp\supfun f\mathcal{A}_{0}\times^{\mathsf{FCD}}\supfun g\mathcal{B}_{0} & \Leftrightarrow\\
\mathcal{A}_{1}\nasymp\supfun f\mathcal{A}_{0}\land\mathcal{B}_{1}\nasymp\supfun g\mathcal{B}_{0} & \Leftrightarrow\\
\mathcal{A}_{0}\suprel f\mathcal{A}_{1}\wedge\mathcal{B}_{0}\suprel g\mathcal{B}_{1}.
\end{align*}
\end{proof}
\section{Definition of staroids}
It follows from the above theorem~\ref{fcd-as-cont} that funcoids
are essentially the same as relations~$\delta$ between sets~$A$
and~$B$, such that $\setcond{Y\in\subsets B}{\exists X\in\subsets A:X\mathrel{\delta}Y}$
and $\setcond{X\in\subsets A}{\exists Y\in\subsets B:X\mathrel{\delta}Y}$
are free stars. This inspires the below definition of staroids (switching
from two sets~$X$ and~$Y$ to a (potentially infinite) family of
posets).
Whilst I have (mostly) thoroughly studied basic properties of funcoids,
\emph{staroids} (defined below) are yet much a mystery. For example,
we do not know whether the set of staroids on powersets is atomic.
Let $n$ be a set. As an example, $n$ may be an ordinal, $n$ may
be a natural number, considered as a set by the formula $n=\{0,\ldots,n-1\}$.
Let $\mathfrak{A}=\mathfrak{A}_{i\in n}$ be a family of posets indexed
by the set $n$.
\begin{defn}
\index{relation!anchored}\index{graph!of anchored relation}I will
call an \emph{anchored relation} a pair $f=(\form f,\GR f)$ of a
family $\form(f)$ of relational structures indexed by some index
set and a relation $\GR(f)\in\mathscr{P}\prod\form(f)$. I call $\GR(f)$
the \emph{graph} of the anchored relation $f$. I denote $\Anch(\mathfrak{A})$
the set of anchored relations of the form~$\mathfrak{A}$.
\end{defn}
\begin{defn}
\index{relation!anchored!infinitary}\index{relation!anchored!finitary}\index{infinitary!relation!anchored}\index{finitary!relation!anchored}\emph{Infinitary
anchored relation} is such an anchored relation whose arity is infinite;
\emph{finitary anchored relation} is such an anchored relation whose
arity is finite.
\end{defn}
\begin{defn}
\index{relation!anchored!on powersets}An anchored relation \emph{on
powersets} is an anchored relation $f$ such that every $(\form f)_{i}$
is a powerset.
\end{defn}
I will denote $\arity f=\dom\form f$.
\begin{defn}
$\rsuprel f$ is the relation between typed elements $\mathfrak{T}(\form f)_{i}$
(for $i\in\arity f$) defined by the formula $L\in\rsuprel f\Leftrightarrow\mathfrak{T}\circ L\in\GR f$.
Every set of anchored relations of the same form constitutes a poset
by the formula $f\sqsubseteq g\Leftrightarrow\GR f\subseteq\GR g$.
\end{defn}
\begin{defn}
\index{relation!anchored!between posets}An anchored relation is an
\emph{anchored relation between posets} when every $(\form f)_{i}$
is a poset.
\end{defn}
\begin{defn}
$(\val f)_{i}L=\setcond{X\in(\form f)_{i}}{L\cup\{(i,X)\}\in\GR f}.$\end{defn}
\begin{prop}
$f$ can be restored knowing $\form(f)$ and $(\val f)_{i}$ for some
$i\in\arity f$.\end{prop}
\begin{proof}
~
\begin{align*}
\GR f=\setcond{K\in\prod\form f}{K\in\GR f} & =\\
\setcond{L\cup\{(i,X)\}}{L\in\prod(\form f)|_{(\arity f)\setminus\{i\}},X\in(\form f)_{i},L\cup\{(i,X)\}\in\GR f} & =\\
\setcond{L\cup\{(i,X)\}}{L\in\prod(\form f)|_{(\arity f)\setminus\{i\}},X\in(\val f)_{i}L}.
\end{align*}
\end{proof}
\begin{defn}
\index{pre-staroid}A \emph{prestaroid} is an anchored relation $f$
between posets such that $(\val f)_{i}L$ is a free star for every
$i\in\arity f$, $L\in\prod(\form f)|_{(\arity f)\setminus\{i\}}$.
\end{defn}
\begin{defn}
\index{staroid}A \emph{staroid} is a prestaroid whose graph is an
upper set (on the poset $\prod\form(f)$).\end{defn}
\begin{defn}
A \emph{(pre)staroid on power sets} is such a (pre)staroid $f$ that every $(\form f)_{i}$
is a lattice of all subsets of some set.\end{defn}
\begin{prop}
If $L\in\prod\form f$ and $L_{i}=\bot^{(\form f)_{i}}$ for some
$i\in\arity f$ then $L\notin\GR f$ if $f$ is a prestaroid.\end{prop}
\begin{proof}
Let $K=L|_{(\arity f)\setminus\{i\}}$. We have $\bot\notin(\val f)_{i}K$;
$K\cup\{(i,\bot)\}\notin\GR f$; $L\notin\GR f$.
\end{proof}
Next we will define \emph{completary staroids}. First goes the general
case, next simpler case for the special case of join-semilattices
instead of arbitrary posets.
\begin{defn}
\index{staroid!completary}A \emph{completary staroid} is an anchored
relation between posets conforming to the formulas:
\begin{enumerate}
\item $\forall K\in\prod\form f:(K\sqsupseteq L_{0}\wedge K\sqsupseteq L_{1}\Rightarrow K\in\GR f)$
is equivalent to $\exists c\in\{0,1\}^{n}:(\mylambda in{L_{c(i)}i})\in\GR f$
for every $L_{0},L_{1}\in\prod\form f$.
\item If $L\in\prod\form f$ and $L_{i}=\bot^{(\form f)_{i}}$ for some
$i\in\arity f$ then $L\notin\GR f$.
\end{enumerate}
\end{defn}
\begin{lem}
Every graph of completary staroid is an upper set.\end{lem}
\begin{proof}
Let $f$ be a completary staroid. Let $L_{0}\sqsubseteq L_{1}$ for
some $L_{0},L_{1}\in\prod\form f$ and $L_{0}\in\GR f$. Then taking
$c=n\times\{0\}$ we get $\mylambda in{L_{c(i)}i}=\mylambda in{L_{0}i}=L_{0}\in\GR f$
and thus $L_{1}\in\GR f$ because $L_{1}\sqsupseteq L_{0}\wedge L_{1}\sqsupseteq L_{1}$.\end{proof}
\begin{prop}
\index{staroid!completary}An anchored relation~$f$ between posets whose form is
a family of join-semilattices is a completary staroid iff both:
\begin{enumerate}
\item \label{cary-main}$L_{0}\sqcup L_{1}\in\GR f\Leftrightarrow\exists c\in\{0,1\}^{n}:(\mylambda in{L_{c(i)}i})\in\GR f$
for every $L_{0},L_{1}\in\prod\form f$.
\item \label{cary-zero}If $L\in\prod\form f$ and $L_{i}=\bot^{(\form f)_{i}}$
for some $i\in\arity f$ then $L\notin\GR f$.
\end{enumerate}
\end{prop}
\begin{proof}
Let the formulas \ref{cary-main} and \ref{cary-zero} hold. Then
$f$ is an upper set: Let $L_{0}\sqsubseteq L_{1}$ for some $L_{0},L_{1}\in\prod\form f$
and $L_{0}\in f$. Then taking $c=n\times\{0\}$ we get $\mylambda in{L_{c(i)}i}=\mylambda in{L_{0}i}=L_{0}\in\GR f$
and thus $L_{1}=L_{0}\sqcup L_{1}\in\GR f$.
Thus to finish the proof it is enough to show that
\[
L_{0}\sqcup L_{1}\in\GR f\Leftrightarrow\forall K\in\prod\form f:(K\sqsupseteq L_{0}\wedge K\sqsupseteq L_{1}\Rightarrow K\in\GR f)
\]
under condition that $\GR f$ is an upper set. But this equivalence is obvious in both directions.\end{proof}
\begin{prop}
Every completary staroid is a staroid.\end{prop}
\begin{proof}
Let $f$ be a completary staroid.
Let $i\in\arity f$, $K\in\prod_{i\in(\arity f)\setminus\{i\}}(\form f)_{i}$.
Let $L_{0}=K\cup\{(i,X_{0})\}$, $L_{1}=K\cup\{(i,X_{1})\}$ for some
$X_{0},X_{1}\in\mathfrak{A}_{i}$.
Let
\[
\forall Z\in\mathfrak{A}_{i}:(Z\sqsupseteq X_{0}\wedge Z\sqsupseteq X_{1}\Rightarrow Z\in(\val f)_{i}K);
\]
then
\[
\forall Z\in\mathfrak{A}_{i}:(Z\sqsupseteq X_{0}\wedge Z\sqsupseteq X_{1}\Rightarrow K\cup\{(i,Z)\}\in\GR f).
\]
If $z\sqsupseteq L_{0}\wedge z\sqsupseteq L_{1}$ then $z\sqsupseteq K\cup\{(i,z_{i})\}$,
thus taking into account that $\GR f$ is an upper set,
\begin{gather*}
\forall z\in\prod\mathfrak{A}:(z\sqsupseteq L_{0}\wedge z\sqsupseteq L_{1}\Rightarrow K\cup\{(i,z_{i})\}\in\GR f).\\
\forall z\in\prod\mathfrak{A}:(z\sqsupseteq L_{0}\wedge z\sqsupseteq L_{1}\Rightarrow z\in\GR f).
\end{gather*}
Thus, by the definition of completary staroid, $L_{0}\in\GR f\vee L_{1}\in\GR f$
that is
\[
X_{0}\in(\val f)_{i}K\vee X_{1}\in(\val f)_{i}K.
\]
So $(\val f)_{i}K$ is a free star (taken into account that $z_{i}=\bot^{(\form f)_{i}}\Rightarrow z\notin\GR f$
and that $(\val f)_{i}K$ is an upper set).\end{proof}
\begin{xca}
Write a simplified proof for the case if every $(\form f)_{i}$ is
a join-semilattice.\end{xca}
\begin{lem}
Every finitary prestaroid is completary.\end{lem}
\begin{proof}
~
\begin{align*}
\exists c\in\{0,1\}^{n}:(\mylambda in{L_{c(i)}i})\in\GR f & \Leftrightarrow\\
\exists c\in\{0,1\}^{n-1}:\left(\begin{aligned}(\{(n-1,L_{0}(n-1))\}\cup(\mylambda i{n-1}{L_{c(i)}i}))\in\GR f & \lor\\
(\{(n-1,L_{1}(n-1))\}\cup(\mylambda i{n-1}{L_{c(i)}i}))\in\GR f
\end{aligned}
\right) & \Leftrightarrow\\
\exists c\in\{0,1\}^{n-1}:\left(\begin{aligned}L_{0}(n-1)\in(\val f)_{n-1}(\mylambda i{n-1}{L_{c(i)}i}) & \lor\\
L_{1}(n-1)\in(\val f)_{n-1}(\mylambda i{n-1}{L_{c(i)}i})
\end{aligned}
\right) & \Leftrightarrow\\
\exists c\in\{0,1\}^{n-1}\forall K\in(\form f)_{i}:\left(\begin{aligned}K\sqsupseteq L_{0}(n-1)\lor K\sqsupseteq L_{1}(n-1) & \Rightarrow\\
K\in(\val f)_{n-1}(\mylambda i{n-1}{L_{c(i)}i})
\end{aligned}
\right) & \Leftrightarrow\\
\exists c\in\{0,1\}^{n-1}\forall K\in(\form f)_{i}:\left(\begin{aligned}K\sqsupseteq L_{0}(n-1)\lor K\sqsupseteq L_{1}(n-1) & \Rightarrow\\
\{(n-1,K)\}\cup(\mylambda i{n-1}{L_{c(i)}i})\in\GR f
\end{aligned}
\right) & \Leftrightarrow\\
\dots\\
\forall K\in\prod\form f:(K\sqsupseteq L_{0}\wedge K\sqsupseteq L_{1}\Rightarrow K\in\GR f).
\end{align*}
\end{proof}
\begin{xca}
Prove the simpler special case of the above theorem when the form
is a family of join-semilattices.\end{xca}
\begin{thm}
For finite arity the following are the same:
\begin{enumerate}
\item prestaroids;
\item staroids;
\item completary staroids.
\end{enumerate}
\end{thm}
\begin{proof}
$f$ is a finitary prestaroid $\Rightarrow$ $f$ is a finitary completary
staroid.
$f$ is a finitary completary staroid $\Rightarrow$ $f$ is a finitary
staroid.
$f$ is a finitary staroid $\Rightarrow$ $f$ is a finitary prestaroid.\end{proof}
\begin{defn}
We will denote the set of staroids of a form $\mathfrak{A}$
as $\mathsf{Strd}(\mathfrak{A})$.
\end{defn}
\section{Upgrading and downgrading a set regarding a filtrator}
Let fix a filtrator $(\mathfrak{A},\mathfrak{Z})$.
\begin{defn}
\index{downgrading}$\downdownarrows f=f\cap\mathfrak{Z}$ for every
$f\in\mathscr{P}\mathfrak{A}$ (\emph{downgrading~}$f$).
\end{defn}
\begin{defn}
\index{upgrading}$\upuparrows f=\setcond{L\in\mathfrak{A}}{\up L\subseteq f}$
for every $f\in\mathscr{P}\mathfrak{Z}$ (\emph{upgrading~}$f$).\end{defn}
\begin{obvious}
$a\in\upuparrows f\Leftrightarrow\up a\subseteq f$ for every $f\in\mathscr{P}\mathfrak{Z}$
and $a\in\mathfrak{A}$.\end{obvious}
\begin{prop}
\label{up-and-back}$\downdownarrows\upuparrows f=f$ if $f$ is an
upper set for every $f\in\mathscr{P}\mathfrak{Z}$.\end{prop}
\begin{proof}
$\downdownarrows\upuparrows f=\upuparrows f\cap\mathfrak{Z}=\setcond{L\in\mathfrak{Z}}{\up L\subseteq f}=\setcond{L\in\mathfrak{Z}}{L\in f}=f\cap\mathfrak{Z}=f$.
\end{proof}
\subsection{\index{upgrading!anchored relation}\index{downgrading!anchored relation}Upgrading
and downgrading staroids}
Let fix a family $(\mathfrak{A},\mathfrak{Z})$ of filtrators.
For a graph $f$ of an anchored relation between posets define $\downdownarrows f$
and $\upuparrows f$ taking the filtrator of $\left(\prod\mathfrak{A},\prod\mathfrak{Z}\right)$.
For a anchored relation between posets $f$ define:
\begin{eqnarray*}
\form\downdownarrows f=\mathfrak{Z} & \text{and} & \GR\downdownarrows f=\downdownarrows\GR f;\\
\form\upuparrows f=\mathfrak{A} & \text{and} & \GR\upuparrows f=\upuparrows\GR f.
\end{eqnarray*}
Below we will show that under certain conditions upgraded staroid
is a staroid, see theorem~\ref{upg-is-strd}.
\begin{prop}
$(\val\downdownarrows f)_{i}L=(\val f)_{i}L\cap\mathfrak{Z}_{i}$
for every $L\in\prod\mathfrak{Z}|_{(\arity f)\setminus\{i\}}$.\end{prop}
\begin{proof}
$(\val\downdownarrows f)_{i}L=\setcond{X\in\mathfrak{Z}_{i}}{L\cup\{(i,X)\}\in\GR f\cap\prod\mathfrak{Z}}=\setcond{X\in\mathfrak{Z}_{i}}{L\cup\{(i,X)\}\in\GR f}=(\val f)_{i}L\cap\mathfrak{Z}_{i}.$\end{proof}
\begin{prop}
\label{down-staroid}Let $(\mathfrak{A}_{i},\mathfrak{Z}_{i})$ be
binarily join-closed filtrators with both the base and the core being
join-semilattices. If $f$ is a staroid of the form $\mathfrak{A}$,
then $\downdownarrows f$ is a staroid of the form $\mathfrak{Z}$.\end{prop}
\begin{proof}
Let $f$ be a staroid.
We need to prove that $(\val\downdownarrows f)_{i}L$ is a free star.
It follows from the last proposition and the fact that it is binarily
join-closed.\end{proof}
\begin{prop}
Let each $(\mathfrak{A}_{i},\mathfrak{Z}_{i})$ for $i\in n$ (where
$n$ is an index set) be a binarily join-closed filtrator, such that
each $\mathfrak{A}_{i}$ and each $\mathfrak{Z}_{i}$ are join-semilattices.
If $f$ is a completary staroid of the form $\mathfrak{A}$ then $\downdownarrows f$
\ is a completary staroid of the form $\mathfrak{Z}$.\end{prop}
\begin{proof}
~
\begin{multline*}
L_{0}\sqcup^{\mathfrak{Z}}L_{1}\in\GR\downdownarrows f\Leftrightarrow L_{0}\sqcup^{\mathfrak{Z}}L_{1}\in\GR f\Leftrightarrow L_{0}\sqcup^{\mathfrak{A}}L_{1}\in\GR f\Leftrightarrow\\
\exists c\in\{0,1\}^{n}:(\lambda i\in n:L_{c(i)}i)\in\GR f\Leftrightarrow\\
\exists c\in\{0,1\}^{n}:(\lambda i\in n:L_{c(i)}i)\in\GR\downdownarrows f
\end{multline*}
for every $L_{0},L_{1}\in\prod\mathfrak{Z}$.
\end{proof}
\section{Principal staroids}
\begin{defn}
\index{staroid!generated}The \emph{staroid generated} by an anchored
relation $F$ is the staroid $f=\uparrow^{\mathsf{Strd}}F$ on powersets
such that $\uparrow\circ L\in\GR f\Leftrightarrow\prod L\nasymp F$
and $(\form f)_{i}=\mathscr{T}(\form F)_{i}$ for every $L\in\prod_{i\in\arity f}\mathscr{T}(\form F)_{i}$.\end{defn}
\begin{rem}
Below we will prove that staroid generated by an anchored relation
is a staroid and moreover a completary staroid.\end{rem}
\begin{defn}
\index{staroid!principal}A \emph{principal staroid} is a staroid
generated by some anchored relation.\end{defn}
\begin{prop}
Every principal staroid is a completary staroid.\end{prop}
\begin{proof}
That $L\notin\GR f$ if $L_{i}=\bot^{(\form f)_{i}}$ for some $i\in\arity f$
is obvious. It remains to prove
\[
\prod(L_{0}\sqcup L_{1})\nasymp F\Leftrightarrow\exists c\in\{0,1\}^{\arity f}:\prod_{i\in n}L_{c(i)}i\nasymp F.
\]
Really
\begin{align*}
\prod(L_{0}\sqcup L_{1})\nasymp F & \Leftrightarrow\\
\exists x\in\prod(L_{0}\sqcup L_{1}):x\in F & \Leftrightarrow\\
\exists x\in\prod_{i\in\arity f}(\form f)_{i}\forall i\in\arity f:(x_{i}\in L_{0}i\sqcup L_{1}i\land x\in F) & \Leftrightarrow\\
\exists x\in\prod_{i\in\arity f}(\form f)_{i}\forall i\in\arity f:((x_{i}\in L_{0}i\lor x_{i}\in L_{1}i)\land x\in F) & \Leftrightarrow\\
\exists x\in\prod_{i\in\arity f}(\form f)_{i}\left(\exists c\in\{0,1\}^{\arity f}:x\in\prod_{i\in\arity f}L_{c(i)}i\land x\in F\right) & \Leftrightarrow\\
\exists c\in\{0,1\}^{\arity f}:\prod_{i\in n}L_{c(i)}i\nasymp F.
\end{align*}
\end{proof}
\begin{defn}
\index{upgraded staroid!generated}The \emph{upgraded staroid generated}
by an anchored relation $F$ is the anchored relation $\upuparrows\uparrow^{\mathsf{Strd}}F$.\end{defn}
\begin{prop}
$\uparrow^{\mathsf{Strd}}F=\downdownarrows\upuparrows\uparrow^{\mathsf{Strd}}F$.\end{prop}
\begin{proof}
Because $\GR\uparrow^{\mathsf{Strd}}F$ is an upper set.\end{proof}
\begin{example}
\label{non-completary}There is such anchored relation $f$ that $\upuparrows\uparrow f$
is not a completary staroid. This also proves existence of non-completary staroids (but not on powersets).\end{example}
\begin{proof}
(based on an \noun{Andreas Blass}'s proof) Take $f$ the set of functions
$x:\mathbb{N}\rightarrow\mathbb{N}$ where $x_{0}$ is an arbitrary natural
number and $x_{i}=\left\{ \begin{array}{ll}
0 & \text{if }n\leqslant x_{0}\\
1 & \text{if }n>x_{0}
\end{array}\right.$ for $i=1,2,3,\ldots$.
Thus $f$ is the graph of a staroid of the form $\mylambda{i}{\mathbb{N}}{\subsets\mathbb{N}}$ (on powersets).
Let $\mathcal{L}_{0}(0)=\mathcal{L}_{1}(0)=\Omega(\mathbb{N})$, $\mathcal{L}_{0}(i)=\uparrow\{0\}$
and $\mathcal{L}_{1}(i)=\uparrow\{1\}$ for $i>0$.
Let $X\in\up(\mathcal{L}_{0}\sqcup\mathcal{L}_{1})$ that is $X\in\up\mathcal{L}_{0}\cap\up\mathcal{L}_{1}$.
$X_{0}$ contains all but finitely many elements of $\mathbb{N}$.
For $i>0$ we have $\{0,1\}\subseteq X_i$.
Evidently, $\prod X$ contains an element of $f$,
that is $\up(\mathcal{L}_0\sqcup\mathcal{L}_1)\in f$ what means
$\mathcal{L}_0\sqcup\mathcal{L}_1\in\upuparrows\uparrow f$.
Now consider any fixed $c\in\{0,1\}^{\mathbb{N}}$. There is at most
one $k\in\mathbb{N}$ such that the sequence $x=\llbracket k,c(1),c(2),\ldots\rrbracket$
(i.e. $c$ with $c(0)$ replaced by $k$) is in $f$. Let $Q=\mathbb{N}\setminus\{k\}$
if there is such a $k$ and $Q=\mathbb{N}$ otherwise.
Take $Y_{i}=\left\{ \begin{array}{ll}
Q & \text{if }i=0\\
\{c(i)\} & \text{if }i>0
\end{array}\right.$ for $i=0,1,2,\ldots$. We have $Y\in\up(\lambda i\in\mathbb{N}:\mathcal{L}_{c(i)}(i))$ for every $c\in\{0,1\}^n$.
But evidently $\prod Y$ does not contain an element of $f$.
Thus, $\prod Y\asymp f$ that is
$Y\notin f$; $\up Y\nsubseteq f$; $Y\notin\GR\upuparrows\uparrow f$ what is impossible if $\upuparrows\uparrow f$ is completary.
\end{proof}
\begin{example}\label{no-intrs}
There exists such an (infinite) set $N$ and $N$-ary relation $f$
that $\mathcal{P}\in\GR\upuparrows\uparrow f$ but there is no indexed family
$a\in\prod_{i\in N}\atoms\mathcal{P}_{i}$ of atomic filters such
that $a\in\GR\upuparrows\uparrow f$ that is $\forall A\in\up a:f\nasymp\prod A$.\end{example}
\begin{proof}
Take $\mathcal{L}_{0}$, $\mathcal{L}_{1}$ and $f$ from the proof
of example \ref{non-completary}. Take $\mathcal{P}=\mathcal{L}_{0}\sqcup\mathcal{L}_{1}$.
If $a\in\prod_{i\in N}\atoms\mathcal{P}_{i}$ then there exists $c\in\{0,1\}^{N}$
such that $a_{i}\sqsubseteq\mathcal{L}_{c(i)}(i)$ (because $\mathcal{L}_{c(i)}(i)\neq\bot$).
Then from that example it follows that $(\lambda i\in N:\mathcal{L}_{c(i)}(i))\notin\GR\upuparrows\uparrow f$
and thus $a\notin\GR\upuparrows\uparrow f$.\end{proof}
\begin{conjecture}
Filtrators of staroids on powersets are join-closed.
\end{conjecture}
\section{Multifuncoids}
\begin{defn}
\index{mult}Let $(\mathfrak{A}_{i},\mathfrak{Z}_{i})$ (where $i\in n$
for an index set $n$) be an indexed family of filtrators.
I call a \emph{mult} $f$ of the form $(\mathfrak{A}_{i},\mathfrak{Z}_{i})$
the triple $f=(\base f,\core f,\rsupfun f)$ of $n$-indexed families
of posets $\base f$ and $\core f$ and $\rsupfun f$ of functions
where for every $i\in n$
\[
\rsupfun f_{i}:\prod(\core f)_{i}|_{(\dom\mathfrak{A})\setminus\{i\}}\rightarrow(\base f)_{i}.
\]
I call $(\base f,\core f)$ the \emph{form} of the mult~$f$.\end{defn}
\begin{rem}
I call it \emph{mult} because it comprises multiple functions~$\rsupfun f_{i}$.
\end{rem}
\begin{defn}
\index{mult!on powersets}A mult \emph{on powersets} is a mult such
that every $((\base f)_{i},(\core f)_{i})$ is a powerset filtrator.
\end{defn}
\begin{defn}
\index{multifuncoid}I will call a \emph{relational mult} a mult~$f$
such that every $(\base f)_{i}$ is a set and for every $i,j\in n$
and $L\in\prod\core f$
\[
L_{i}\in\rsupfun f_{i}L|_{(\dom L)\setminus\{i\}}\Leftrightarrow L_{j}\in\rsupfun f_{j}L|_{(\dom L)\setminus\{j\}}.
\]
I denote $\arity f=n$.
\end{defn}
\begin{defn}
\emph{Prestaroidal mult} is a relational mult of the form $(\mathfrak{A},\mylambda i{\dom\mathfrak{A}}{\mathfrak{S}(\mathfrak{A}_{i})})$
(where $\mathfrak{A}$ is a poset), that is such that $\rsupfun f_{i}L$
is a free star for every $i\in n$ and $L\in\prod_{i\in(\dom L)\setminus\{i\}}\core f_i$.
\end{defn}
\begin{defn}
\index{multifuncoid}I will call a \emph{multifuncoid} a mult~$f$ such
that $(\core f)_{i}\subseteq(\base f)_{i}$ (thus having a filtrator
$((\base f)_{i},(\core f)_{i})$) for each $i\in n$ and for every
$i,j\in n$ and $L\in\prod\core f$
\begin{equation}
L_{i}\nasymp\rsupfun f_{i}L|_{(\dom L)\setminus\{i\}}\Leftrightarrow L_{j}\nasymp\rsupfun f_{j}L|_{(\dom L)\setminus\{j\}}.\label{alpha-cond}
\end{equation}
I denote the set of multifuncoids for a family~$(\mathfrak{A},\mathfrak{Z})$ of filtrators as
$\mathsf{pFCD}(\mathfrak{A},\mathfrak{Z})$ or just $\mathsf{pFCD}(\mathfrak{A})$ when $\mathfrak{Z}$ is clear from context.
\end{defn}
\begin{defn}
To every multifuncoid~$f$ corresponds an anchored relation~$g$ by the
formula (with arbitrary $i\in\arity f$)
\[
L\in\GR g\Leftrightarrow L_{i}\nasymp\rsupfun f_{i}L|_{(\dom L)\setminus\{i\}}.
\]
\end{defn}
\begin{prop}
Prestaroidal mults~$\Lambda g=f$ of the form $(\mathfrak{Z},\mylambda i{\dom\mathfrak{Z}}{\mathfrak{S}(\mathfrak{Z}_{i})})$
bijectively correspond to pre-staroids~$g$ of the form~$\mathfrak{Z}$
by the formulas (for every $K\in\prod\mathfrak{Z}$, $i\in\dom\mathfrak{Z}$,
$L\in\prod_{j\in(\dom\mathfrak{A})\setminus\{i\}}\mathfrak{Z}_{j}$,
$X\in\mathfrak{Z}_{i}$)
\begin{gather}
K\in\GR g\Leftrightarrow K_{i}\in\rsupfun f_{i}K|_{(\dom L)\setminus\{i\}};\label{mf-to-star}\\
X\in\rsupfun f_{i}L\Leftrightarrow L\cup\{(i,X)\}\in\GR g.\label{star-to-mf}
\end{gather}
\end{prop}
\begin{proof}
If $f$ is a prestaroidal mult, then obviously formula~(\ref{mf-to-star})
defines an anchored relation between posets. $(\val g)_{i}=\rsupfun f_{i}L$
is a free star. Thus $g$ is a prestaroid.
If $g$ is a prestaroid, then obviously formula~(\ref{star-to-mf})
defines a relational mult. This mult is obviously prestaroidal.
It remains to prove that these correspondences are inverse of each
other.
Let $f_{0}$ be a prestaroidal mult, $g$ be the pre-staroid corresponding
to~$f$ by formula~(\ref{mf-to-star}), and $f_{1}$ be the prestaroidal
mult corresponding to~$g$ by formula~(\ref{star-to-mf}). Let's
prove $f_{0}=f_{1}$. Really,
\[
X\in\rsupfun{f_{1}}_{i}L\Leftrightarrow L\cup\{(i,X)\}\in\GR g\Leftrightarrow X\in\rsupfun{f_{0}}_{i}L.
\]
Let now $g_{0}$ be a prestaroid, $f$ be a prestaroidal mult corresponding
to~$g_{0}$ by formula~(\ref{star-to-mf}), and $g_{1}$ be a prestaroid
corresponding to~$f$ by formula~(\ref{mf-to-star}). Let's prove
$g_{0}=g_{1}$. Really,
\[
K\in\GR g_{1}\Leftrightarrow K_{i}\in\rsupfun f_{i}K|_{(\dom L)\setminus\{i\}}\Leftrightarrow K|_{(\dom L)\setminus\{i\}}\cup\{(i,K_{i})\}\in\GR g_{0}\Leftrightarrow K\in\GR g_{0}.
\]
\end{proof}
\begin{defn}
I will denote $\rsuprel{f}=\GR g$ for the prestaroidal mult~$f$ corresponding to anchored relation~$g$.
\end{defn}
\begin{prop}
For a form $(\mathfrak{Z},\mylambda i{\dom\mathfrak{Z}}{\mathfrak{S}(\mathfrak{Z}_{i})})$
where each $\mathfrak{Z}_{i}$ is a boolean lattice, relational mults
are the same as multifuncoids (if we equate poset elements with principal
free stars).\end{prop}
\begin{proof}
~
\begin{multline*}
(L_{i}\nasymp\rsupfun f_{i}L|_{(\dom L)\setminus\{i\}}\Leftrightarrow L_{j}\nasymp\rsupfun f_{j}L|_{(\dom L)\setminus\{j\}})\Leftrightarrow\\
(L_{i}\in\corestar\rsupfun f_{i}L|_{(\dom L)\setminus\{i\}}\Leftrightarrow L_{j}\in\corestar\rsupfun f_{j}L|_{(\dom L)\setminus\{j\}})\Leftrightarrow\\
(L_{i}\in\rsupfun f_{i}L|_{(\dom L)\setminus\{i\}}\Leftrightarrow L_{j}\in\rsupfun f_{j}L|_{(\dom L)\setminus\{j\}}).
\end{multline*}
\end{proof}
\begin{thm}
Fix some indexed family $\mathfrak{Z}$ of join semi-lattices.
\[
(\val f)_{j}(L\cup\{(i,X\sqcup Y)\})=(\val f)_{j}(L\cup\{(i,X)\})\sqcup(\val f)_{j}(L\cup\{(i,Y)\})
\]
for every prestaroid $f$ of the form~$\mathfrak{Z}$ and $i,j\in\arity f$,
$i\neq j$, $L\in\prod_{k\in L\setminus\{i,j\}}\mathfrak{Z}_{k}$,
$X,Y\in\mathfrak{Z}_{i}$.\end{thm}
\begin{proof}
Let $i,j\in\arity f$, $i\ne j$ and $L\in\prod_{k\in L\setminus\{i,j\}}\mathfrak{Z}_{k}$.
Let $Z\in\mathfrak{Z}_{i}$.
\begin{align*}
Z\in(\val f)_{j}(L\cup\{(i,X\sqcup Y)\}) & \Leftrightarrow\\
L\cup\{(i,X\sqcup Y),(j,Z)\}\in\GR f & \Leftrightarrow\\
X\sqcup Y\in(\val f)_{i}(L\cup\{(j,Z)\}) & \Leftrightarrow\\
X\in(\val f)_{i}(L\cup\{(j,Z)\})\lor Y\in(\val f)_{i}(L\cup\{(j,Z)\}) & \Leftrightarrow\\
L\cup\{(i,X),(j,Z)\}\in\GR f\lor L\cup\{(i,Y),(j,Z)\}\in\GR f & \Leftrightarrow\\
Z\in(\val f)_{j}(L\cup\{(i,X)\})\lor Z\in(\val f)_{j}(L\cup\{(i,Y)\}) & \Leftrightarrow\\
Z\in(\val f)_{j}(L\cup\{(i,X)\})\cup(\val f)_{j}(L\cup\{(i,Y)\}) & \Leftrightarrow\\
Z\in(\val f)_{j}(L\cup\{(i,X)\})\sqcup(\val f)_{j}(L\cup\{(i,Y)\})
\end{align*}
Thus $(\val f)_{j}(L\cup\{(i,X\sqcup Y)\})=(\val f)_{j}(L\cup\{(i,X)\})\sqcup(\val f)_{j}(L\cup\{(i,Y)\})$.
\end{proof}
Let us consider the filtrator $\left(\prod_{i\in\arity f}\mathfrak{S}((\form f)_{i}),\prod_{i\in\arity f}(\form f)_{i}\right)$.
\begin{conjecture}
A finitary anchored relation between join-semilattices is a staroid
iff $(\val f)_{j}(L\cup\{(i,X\sqcup Y)\})=(\val f)_{j}(L\cup\{(i,X)\})\sqcup(\val f)_{j}(L\cup\{(i,Y)\})$
for every $i,j\in\arity f$ ($i\ne j$) and $X,Y\in(\form f)_{i}$.\end{conjecture}
\begin{thm}
\label{upg-is-strd}Let $(\mathfrak{A}_{i},\mathfrak{Z}_{i})$ be
a family of join-closed down-aligned filtrators whose both base and
core are join-semilattices. Let $f$ be a staroid of the form $\mathfrak{Z}$.
Then $\upuparrows f$ is a staroid of the form $\mathfrak{A}$.
\end{thm}
\begin{proof}
First prove that $\upuparrows f$ is a prestaroid. We need to prove
that $\bot\notin(\GR\upuparrows f)_{i}$ (that is $\up\bot\nsubseteq(\GR f)_{i}$
that is $\bot\notin(\GR f)_{i}$ what is true by the theorem conditions)
and that for every $\mathcal{X},\mathcal{Y}\in\mathfrak{A}_{i}$ and
$\mathcal{L}\in\prod_{i\in(\arity f)\setminus\{i\}}\mathfrak{A}_{i}$
where $i\in\arity f$
\[
\mathcal{L}\cup\{(i,\mathcal{X}\sqcup\mathcal{Y})\}\in\GR\upuparrows f\Leftrightarrow\mathcal{L}\cup\{(i,\mathcal{X})\}\in\GR\upuparrows f\vee\mathcal{L}\cup\{(i,\mathcal{Y})\}\in\GR\upuparrows f.
\]
The reverse implication is obvious. Let $\mathcal{L}\cup\{(i,\mathcal{X}\sqcup\mathcal{Y})\}\in\GR\upuparrows f$.
Then for every $L\in\up\mathcal{L}$ and $X\in\up\mathcal{X}$, $Y\in\up\mathcal{Y}$
we have
% and $X\sqcup^{\mathfrak{Z}_{i}}Y\sqsupseteq\mathcal{X}\sqcup^{\mathfrak{A}_{i}}\mathcal{Y}$ thus
$L\cup\{(i,X\sqcup^{\mathfrak{Z}_{i}}Y)\}\in\GR f$ and thus
\[
L\cup\{(i,X)\}\in\GR f\vee L\cup\{(i,Y)\}\in\GR f
\]
consequently $\mathcal{L}\cup\{(i,\mathcal{X})\}\in\GR\upuparrows f\vee\mathcal{L}\cup\{(i,\mathcal{Y})\}\in\GR\upuparrows f$.
It is left to prove that $\upuparrows f$ is an upper set, but this
is obvious.
\end{proof}
There is a conjecture similar to the above theorems:
\begin{conjecture}
\label{strd-rel-atoms}$L\in\upuparrows\mathord{\rsuprel f}\Rightarrow\upuparrows\mathord{\rsuprel f}\cap\prod_{i\in\dom\mathfrak{A}}\atoms L_{i}\neq\emptyset$
for every multifuncoid $f$ for the filtrator $(\mathscr{F}^{n},\mathfrak{Z}^{n})$.
\end{conjecture}
\begin{conjecture}
Let $(\mathfrak{A},\mathfrak{Z})$ be a powerset filtrator, let $n$
be an index set. Consider the filtrator $(\mathscr{F}^{n},\mathfrak{Z}^{n})$.
Then if $f$ is a completary staroid of the form $\mathfrak{Z}^{n}$,
then $\upuparrows f$ is a completary staroid of the form $\mathfrak{A}^{n}$.
\end{conjecture}
\begin{example}
There is such an anchored relation $f$ that for some $k\in\dom f$
\[
\rsupfun{\upuparrows\uparrow f}{}_{k}\mathcal{L}\neq\bigsqcup_{a\in\prod_{i\in(\dom f)\setminus\{k\}}\atoms\mathcal{L_{}}_{i}}^{\mathscr{f}}\rsupfun{\upuparrows\uparrow f}_{k}a.
\]
\end{example}
\begin{proof}
Take $\mathcal{P}\in\GR f$ from the counter-example~\ref{no-intrs}. We
have
\[
\forall a\in\prod_{i\in\dom f}\atoms\mathcal{P}_{i}:a\notin\GR\mathcal{P}.
\]
Take $k=1$.
Let $\mathcal{L}=\mathcal{P}|_{(\dom f)\setminus\{k\}}$. Then $a\notin\GR\upuparrows\uparrow f$
and thus $a_{k}\asymp\rsupfun{\upuparrows\uparrow f}{}_{k}a|_{(\dom f)\setminus\{k\}}$.
Consequently $\mathcal{P}_{k}\asymp\rsupfun{\upuparrows\uparrow f}{}_{k}a|_{(\dom f)\setminus\{k\}}$
and thus $\mathcal{P}_{k}\asymp\bigsqcup_{a\in\prod_{i\in(\dom f)\setminus\{k\}}\atoms\mathcal{L_{}}_{i}}^{\mathscr{f}}\rsupfun{\upuparrows\uparrow f}{}_{k}a$
because $\mathcal{P}_{k}$ is principal.
But $\mathcal{P}_{k}\nasymp\rsupfun{\upuparrows\uparrow f}{}_{k}\mathcal{L}$.
Thus follows $\langle\upuparrows\uparrow f\rangle_{k}^{\ast}\mathcal{L}\neq\bigsqcup_{a\in\prod_{i\in(\dom f)\setminus\{k\}}\atoms\mathcal{L}_{i}}^{\mathscr{f}}\rsupfun{\upuparrows\uparrow f}{}_{k}a$.\end{proof}
\section{Join of multifuncoids}
\index{order!of mults}Mults are ordered by the formula $f\sqsubseteq g\Leftrightarrow\rsupfun f\sqsubseteq\rsupfun g$
where $\sqsubseteq$ in the right part of this formula is the product
order. I will denote $\sqcap$, $\sqcup$, $\bigsqcap$, $\bigsqcup$
(without an index) the order poset operations on the poset of mults.
\begin{rem}
To describe this, the definition of product order is used twice. Let
$f$ and $g$ be mults of the same form $(\mathfrak{A},\mathfrak{Z})$
\begin{gather*}
\rsupfun f\sqsubseteq\rsupfun g\Leftrightarrow\forall i\in\dom\mathfrak{Z}:\rsupfun f_{i}\sqsubseteq\rsupfun g_{i};\\
\rsupfun f_{i}\sqsubseteq\rsupfun g_{i}\Leftrightarrow\forall L\in\prod\mathfrak{Z}|_{(\dom\mathfrak{Z})\setminus\{i\}}:\rsupfun f_{i}L\sqsubseteq\rsupfun g_{i}L.
\end{gather*}
\end{rem}
\begin{obvious}
$\left(\bigsqcup F\right)K=\bigsqcup_{f\in F}fK$ for every set $F$
of mults of the same form $\mathfrak{Z}$ and $K\in\prod\mathfrak{Z}$
whenever every $\bigsqcup_{f\in F}fK$ is defined.\end{obvious}
\begin{thm}
$f\sqcup^{\mathsf{pFCD}(\mathfrak{A})}g=f\sqcup g$ for every multifuncoids
$f$ and $g$ for the same indexed family of starrish join-semilattices
filtrators.\end{thm}
\begin{proof}
$\alpha_{i}x\eqdef \rsupfun{f_{i}}x\sqcup \rsupfun{g_{i}}x$. It is enough to prove that
$\alpha$ is a multifuncoid.
We need to prove:
\[
L_{i}\nasymp\alpha_{i}L|_{(\dom L)\setminus\{i\}}\Leftrightarrow L_{j}\nasymp\alpha_{j}L|_{(\dom L)\setminus\{j\}}.
\]
Really,
\begin{align*}
L_{i}\nasymp\alpha_{i}L|_{(\dom L)\setminus\{i\}} & \Leftrightarrow\\
L_{i}\nasymp \rsupfun{f_{i}}L|_{(\dom L)\setminus\{i\}}\sqcup \rsupfun{g_{i}}L|_{(\dom L)\setminus\{i\}} & \Leftrightarrow\\
L_{i}\nasymp \rsupfun{f_{i}}L|_{(\dom L)\setminus\{i\}}\lor L_{i}\nasymp \rsupfun{g_{i}}L|_{(\dom L)\setminus\{i\}} & \Leftrightarrow\\
L_{j}\nasymp \rsupfun{f_{j}}L|_{(\dom L)\setminus\{j\}}\lor L_{j}\nasymp \rsupfun{g_{j}}L|_{(\dom L)\setminus\{j\}} & \Leftrightarrow\\
L_{j}\nasymp \rsupfun{f_{j}}L|_{(\dom L)\setminus\{j\}}\sqcup \rsupfun{g_{j}}L|_{(\dom L)\setminus\{j\}} & \Leftrightarrow\\
L_{j}\nasymp\alpha_{j}L|_{(\dom L)\setminus\{j\}}.
\end{align*}
\end{proof}
\begin{thm}
$\bigsqcup^{\mathsf{pFCD}(\mathfrak{A})}F=\bigsqcup F$ for every
set $F$ of multifuncoids for the same indexed family of join infinite
distributive complete lattices filtrators.\end{thm}
\begin{proof}
$\alpha_{i}x\eqdef\bigsqcup_{f\in F}\rsupfun{f}_{i}x$. It is enough to prove
that $\alpha$ is a multifuncoid.
We need to prove:
\[
L_{i}\nasymp\alpha_{i}L|_{(\dom L)\setminus\{i\}}\Leftrightarrow L_{j}\nasymp\alpha_{j}L|_{(\dom L)\setminus\{j\}}.
\]
Really,
\begin{align*}
L_{i}\nasymp\alpha_{i}L|_{(\dom L)\setminus\{i\}} & \Leftrightarrow\\
L_{i}\nasymp\bigsqcup_{f\in F}\rsupfun{f_{i}}L|_{(\dom L)\setminus\{i\}} & \Leftrightarrow\\
\exists f\in F:L_{i}\nasymp \rsupfun{f_{i}}L|_{(\dom L)\setminus\{i\}} & \Leftrightarrow\\
\exists f\in F:L_{j}\nasymp \rsupfun{f_{j}}L|_{(\dom L)\setminus\{j\}} & \Leftrightarrow\\
L_{j}\nasymp\bigsqcup_{f\in F}\rsupfun{f_{j}}L|_{(\dom L)\setminus\{j\}} & \Leftrightarrow\\
L_{j}\nasymp\alpha_{j}L|_{(\dom L)\setminus\{j\}}.
\end{align*}
\end{proof}
% \begin{prop}
% The mapping $f\mapsto\Lambda f$ is an order embedding, for multifuncoids
% for indexed families $(\mathfrak{A}_{i},\mathfrak{Z}_{i})$ of down-aligned
% starrish filtrators with separable binarily meet-closed core.\end{prop}
% \begin{proof}
% The mapping $f\mapsto\Lambda f$ is defined because $\mathfrak{A}_{i}$
% are starrish posets (and $(\mathfrak{A}_{i},\mathfrak{Z}_{i})$ is
% with binarily meet-closed core and down-aligned). The mapping is injective
% because the filtrators are with separable cores ($\setcond{X\in\mathfrak{Z}_{i}}{X\nasymp\supfun fA}=\setcond{X\in\mathfrak{Z}_{i}}{X\nasymp\supfun fB}$
% implies $\supfun{\Lambda f}A=\supfun{\Lambda f}B$). That $f\mapsto\Lambda f$
% is a monotone function is obvious.\end{proof}
% \begin{rem}
% This order embedding is useful to describe properties of posets of
% prestaroids.\end{rem}
\begin{thm}
If $f$, $g$ are multifuncoids for a primary filtrator $(\mathfrak{A}_{i},\mathfrak{Z}_{i})$
where $\mathfrak{Z}_{i}$ are separable starrish posets, then $f\sqcup^{\mathsf{pFCD}(\mathfrak{A})}g\in\mathsf{pFCD}(\mathfrak{A})$.\end{thm}
\begin{proof}
Let $A\in\mathord{\rsuprel{f\sqcup^{\mathsf{pFCD}(\mathfrak{A})}g}}$
and $B\sqsupseteq A$. Then for every $k\in\dom\mathfrak{A}$
$A_{k}\nasymp\rsupfun{f\sqcup^{\mathsf{pFCD}(\mathfrak{A})}g}A|_{(\dom\mathfrak{A})\setminus\{k\}}$;
$A_{k}\nasymp\rsupfun{f\sqcup g}A|_{(\dom\mathfrak{A})\setminus\{k\}}$; $A_{k}\nasymp \rsupfun{f}(A|_{(\dom\mathfrak{A})\setminus\{k\}})\sqcup\rsupfun{g}(A|_{(\dom\mathfrak{A})\setminus\{k\}})$.
Thus $A_{k}\nasymp\rsupfun{f}(A|_{(\dom\mathfrak{A})\setminus\{k\}})\lor A_{k}\nasymp\rsupfun{g}(A|_{(\dom\mathfrak{A})\setminus\{k\}})$;
$A\in\mathord{\rsuprel f}\lor A\in\mathord{\rsuprel g}$; $B\in\mathord{\rsuprel f}\lor B\in\mathord{\rsuprel g}$;
$B_{k}\nasymp\rsupfun{f}(B|_{(\dom\mathfrak{A})\setminus\{k\}})\lor B_{k}\nasymp\rsupfun{g}(B|_{(\dom\mathfrak{A})\setminus\{k\}})$;
$B_{k}\nasymp\rsupfun{f}(B|_{(\dom\mathfrak{A})\setminus\{k\}})\sqcup\rsupfun{g}(B|_{(\dom\mathfrak{A})\setminus\{k\}})$;
$B_{k}\nasymp\rsupfun{f\sqcup g}B|_{(\dom\mathfrak{A})\setminus\{k\}}=\rsupfun{f\sqcup^{\mathsf{pFCD}(\mathfrak{A})}g}B|_{(\dom\mathfrak{A})\setminus\{k\}}$.
Thus $B\in\mathord{\rsuprel{f\sqcup^{\mathsf{pFCD}(\mathfrak{A})}g}}$.\end{proof}
\begin{thm}
If $F$ is a set of multifuncoids for the same indexed family of join
infinite distributive complete lattices filtrators, then $\bigsqcup^{\mathsf{pFCD}(\mathfrak{A})}F\in\mathsf{pFCD}(\mathfrak{A})$.\end{thm}
\begin{proof}
Let $A\in\mathord{\rsuprel{\bigsqcup^{\mathsf{pFCD}(\mathfrak{A})}F}}$
and $B\sqsupseteq A$. Then for every $k\in\dom\mathfrak{A}$
$A_{k}\nasymp\rsupfun{\bigsqcup^{\mathsf{pFCD}(\mathfrak{A})}F}A|_{(\dom\mathfrak{A})\setminus\{k\}}=\rsupfun{\bigsqcup F}A|_{(\dom\mathfrak{A})\setminus\{k\}}=\bigsqcup_{f\in F}\rsupfun{f}(A|_{(\dom\mathfrak{A})\setminus\{k\}})$.
Thus $\exists f\in F:A_{k}\nasymp\rsupfun{f}(A|_{(\dom\mathfrak{A})\setminus\{k\}})$;
$\exists f\in F:A\in\rsuprel{f}$; $B\in\rsuprel{f}$ for some
$f\in F$; $\exists f\in F:B_{k}\nasymp\rsupfun{f}(B|_{(\dom\mathfrak{A})\setminus\{k\}})$;
$B_{k}\nasymp\bigsqcup_{f\in F}\rsupfun{f}(B|_{(\dom\mathfrak{A})\setminus\{k\}})=\rsupfun{\bigsqcup^{\mathsf{pFCD}(\mathfrak{A})}F}B|_{(\dom\mathfrak{A})\setminus\{k\}}$.
Thus $B\in\mathord{\rsuprel{\bigsqcup^{\mathsf{pFCD}(\mathfrak{A})}F}}$.
\end{proof}
\section{Infinite product of poset elements}
\index{product!staroidal}Let $A_{i}$ be a family of elements of
a family $\mathfrak{A}_{i}$ of posets. The \emph{staroidal product}
$\prod^{\mathsf{Strd}(\mathfrak{A})}A$ is defined by the formula
(for every $L\in\prod\mathfrak{A}$)
\[
\form\prod^{\mathsf{Strd}(\mathfrak{A})}A=\mathfrak{A}\hspace{1em}\text{and}\hspace{1em}L\in\GR\prod^{\mathsf{Strd}(\mathfrak{A})}A\Leftrightarrow\forall i\in\dom\mathfrak{A}:A_{i}\nasymp L_{i}.
\]
\begin{prop}
If $\mathfrak{A}_{i}$ are powerset algebras, staroidal product of
principal filters is essentially equivalent to Cartesian product.
More precisely, $\prod_{i\in\dom A}^{\mathsf{Strd}}\uparrow^{\mathscr{F}}A_{i}=\upuparrows\uparrow^{\mathsf{Strd}}\prod A$
for an indexed family $A$ of sets.\end{prop}
\begin{proof}
~
\begin{align*}
L\in\GR\upuparrows\uparrow^{\mathsf{Strd}}\prod A & \Leftrightarrow\\
\up L\subseteq\GR\uparrow^{\mathsf{Strd}}\prod A & \Leftrightarrow\\
\forall X\in\up L:\prod X\nasymp\prod A & \Leftrightarrow\\
\forall X\in\up L,i\in\dom A:X_{i}\nasymp A_{i} & \Leftrightarrow\\
\forall i\in\dom A:L_{i}\nasymp\uparrow^{\mathscr{F}}A_{i} & \Leftrightarrow\\
L\in\GR\prod_{i\in\dom A}^{\mathsf{Strd}}\uparrow^{\mathscr{F}}A_{i}.
\end{align*}
\end{proof}
\begin{cor}
Staroidal product of principal filters is an upgraded principal staroid.\end{cor}
\begin{prop}
\label{up-down-fcd}$\prod^{\mathsf{Strd}}a=\upuparrows\downdownarrows\prod^{\mathsf{Strd}}a$
if each $a_{i}\in\mathfrak{A}_{i}$ (for $i\in n$ where $n$ is some
index set) where each $(\mathfrak{A}_{i\in n},\mathfrak{Z}_{i\in n})$
is a filtrator with separable core.\end{prop}
\begin{proof}
~
\begin{align*}
\GR\upuparrows\downdownarrows\prod^{\mathsf{Strd}}a & =\\
\setcond{L\in\prod\mathfrak{A}}{\up L\subseteq\mathfrak{Z}\cap\GR\prod^{\mathsf{Strd}}a} & =\\
\setcond{L\in\prod\mathfrak{A}}{\up L\subseteq\GR\prod^{\mathsf{Strd}}a} & =\\
\setcond{L\in\prod\mathfrak{A}}{\forall K\in\up L:K\in\GR\prod^{\mathsf{Strd}}a} & =\\
\setcond{L\in\prod\mathfrak{A}}{\forall K\in\up L,i\in n:K_{i}\nasymp a_{i}} & =\\
\setcond{L\in\prod\mathfrak{A}}{\forall i\in n,K\in\up L:K_{i}\nasymp a_{i}} & =\\
\setcond{L\in\prod\mathfrak{A}}{\forall i\in n:L_{i}\nasymp a_{i}} & =\\
\GR\prod^{\mathsf{Strd}}a
\end{align*}
(taken into account that our filtrators are with a separable core).\end{proof}
\begin{thm}
Staroidal product is a completary staroid (if our posets are starrish
join-semilattices).\end{thm}
\begin{proof}
We need to prove
\[
\forall i\in\dom\mathfrak{A}:A_{i}\nasymp(L_{0}i\sqcup L_{1}i)\Leftrightarrow\exists c\in\{0,1\}^{n}\forall i\in\dom\mathfrak{A}:A_{i}\nasymp L_{c(i)}i.
\]
Really,
\begin{multline*}
\forall i\in\dom\mathfrak{A}:A_{i}\nasymp(L_{0}i\sqcup L_{1}i)\Leftrightarrow\forall i\in\dom\mathfrak{A}:(A_{i}\nasymp L_{0}i\vee A_{i}\nasymp L_{1}i)\Leftrightarrow\\
\exists c\in\{0,1\}^{\dom\mathfrak{A}}\forall i\in\dom\mathfrak{A}:A_{i}\nasymp L_{c(i)}i.
\end{multline*}
\end{proof}
\begin{defn}
\index{product!funcoidal}Let $(\mathfrak{A}_{i},\mathfrak{Z}_{i})$
be an indexed family of filtrators and every $\mathfrak{A}_{i}$
has least element.
Then for every $A\in\prod\mathfrak{A}$ \emph{funcoidal product} is
multifuncoid $\prod^{\mathsf{FCD}(\mathfrak{A})}A$ defined by the
formula (for every $L\in\prod\mathfrak{Z}$):
\[
\rsupfun{\prod^{\mathsf{FCD}(\mathfrak{A})}A}_{k}L=\left\{ \begin{array}{ll}
A_{k} & \text{if }\forall i\in(\dom\mathfrak{A})\setminus\{k\}:A_{i}\nasymp L_{i}\\
\bot^{\mathfrak{A}} & \text{otherwise}.
\end{array}\right.
\]
\end{defn}
\begin{prop}
$\GR\prod^{\mathsf{Strd}(\mathfrak{A})}A=\mathord{\rsuprel{\prod^{\mathsf{FCD}(\mathfrak{A})}A}}$.\end{prop}
\begin{proof}
~
\begin{align*}
L\in\GR\prod^{\mathsf{Strd}(\mathfrak{A})}A & \Leftrightarrow\\
\forall i\in\dom\mathfrak{A}:A_{i}\nasymp L_{i} & \Leftrightarrow\\
\forall i\in(\dom\mathfrak{A})\setminus\{k\}:A_{i}\nasymp L_{i}\land L_{k}\nasymp A_{k} & \Leftrightarrow\\
L_{k}\nasymp\rsupfun{\prod^{\mathsf{FCD}(\mathfrak{A})}A}_{k}L|_{(\dom\mathfrak{A})\setminus\{k\}} & \Leftrightarrow\\
L\in\mathord{\rsuprel{\prod^{\mathsf{FCD}(\mathfrak{A})}A}}.
\end{align*}
\end{proof}
\begin{cor}
Funcoidal product is a completary multifuncoid.\end{cor}
\begin{proof}
It is enough to prove that funcoidal product is a multifuncoid. Really,
\begin{multline*}
L_{i}\nasymp\rsupfun{\prod^{\mathsf{FCD}(\mathfrak{A})}A}_{i}L|_{(\dom\mathfrak{A})\setminus\{i\}}\Leftrightarrow\\ \forall i\in\dom\mathfrak{A}:A_{i}\nasymp L_{i}\Leftrightarrow L_{j}\nasymp\rsupfun{\prod^{\mathsf{FCD}(\mathfrak{A})}A}_{j}L|_{(\dom\mathfrak{A})\setminus\{j\}}.
\end{multline*}
\end{proof}
\begin{thm}
If our each filtrator $(\mathfrak{A}_i,\mathfrak{Z}_i)$
is with separable core and $A\in\prod\mathfrak{Z}$, then $\upuparrows\prod^{\mathsf{Strd}(\mathfrak{Z})}A=\prod^{\mathsf{Strd}(\mathfrak{A})}A$.\end{thm}
\begin{proof}
~
\begin{align*}
\GR\upuparrows\prod^{\mathsf{Strd}(\mathfrak{Z})}A & =\\
\setcond{L\in\prod\mathfrak{A}}{\up L\subseteq\prod^{\mathsf{Strd}(\mathfrak{Z})}A} & =\\
\setcond{L\in\prod\mathfrak{A}}{\forall K\in\up L,i\in\dom\mathfrak{A}:A_{i}\nasymp K_{i}} & =\\
\setcond{L\in\prod\mathfrak{A}}{\forall i\in\dom\mathfrak{A},K\in\up L_{i}:A_{i}\nasymp K} & =\\
\setcond{L\in\prod\mathfrak{A}}{\forall i\in\dom\mathfrak{A}:A_{i}\nasymp L_{i}} & =\\
\GR\prod^{\mathsf{Strd}(\mathfrak{A})}A.
\end{align*}
\end{proof}
\begin{prop}
Let $\left(\prod\mathfrak{A},\prod\mathfrak{Z}\right)$ be a meet-closed
filtrator, $A\in\prod\mathfrak{Z}$. Then $\downdownarrows\prod^{\mathsf{Strd}(\mathfrak{A})}A=\prod^{\mathsf{Strd}(\mathfrak{Z})}A$.\end{prop}
\begin{proof}
~
\begin{align*}
\GR\downdownarrows\prod^{\mathsf{Strd}(\mathfrak{A})}A & =\\
\downdownarrows\GR\prod^{\mathsf{Strd}(\mathfrak{A})}A & =\\
\downdownarrows\setcond{L\in\prod\mathfrak{A}}{\forall i\in\dom\mathfrak{A}:A_{i}\nasymp L_{i}} & =\\
\setcond{L\in\prod\mathfrak{A}}{\forall i\in\dom\mathfrak{A}:A_{i}\nasymp L_{i}}\cap\prod\mathfrak{Z} & =\\
\setcond{L\in\prod\mathfrak{Z}}{\forall i\in\dom\mathfrak{A}:A_{i}\nasymp L_{i}} & =\\
\GR\prod^{\mathsf{Strd}(\mathfrak{Z})}A.
\end{align*}
\end{proof}
\begin{cor}
If each $(\mathfrak{A}_{i},\mathfrak{Z}_{i})$ is a powerset filtrator
and $A\in\prod\mathfrak{Z}$, then $\downdownarrows\prod^{\mathsf{Strd}(\mathfrak{A})}A$
is a principal staroid.\end{cor}
\begin{proof}
Use the ``obvious'' fact above.\end{proof}
\begin{thm}
\label{meet-fprods}Let $\mathscr{F}$ be a family of sets of filters
on meet-semilattices with least elements. Let $a\in\prod\mathscr{F}$,
$S\in\subsets\prod\mathscr{F}$, and every $\Pr_{i}S$ be a generalized
filter base, $\bigsqcap S=a$. Then
\[
\prod^{\mathsf{Strd}(\mathscr{F})}a=\bigsqcap_{A\in S}\prod^\mathsf{Strd(\mathscr{F})}A.
\]
\end{thm}
\begin{proof}
That $\prod^{\mathsf{Strd}(\mathscr{F})}a$ is a lower bound for $\setcond{\prod^{\mathsf{Strd}(\mathscr{F})}A}{A\in S}$
is obvious.
Let $f$ be a lower bound for $\setcond{\prod^{\mathsf{Strd}(\mathscr{F})}A}{A\in S}$.
Thus $\forall A\in S:\GR f\subseteq\GR\prod^{\mathsf{Strd}(\mathscr{F})}A$.
Thus for every $A\in S$ we have $L\in\GR f$ implies $\forall i\in\dom\mathfrak{A}:A_{i}\nasymp L_{i}$.
Then, by properties of generalized filter bases, $\forall i\in\dom\mathfrak{A}:a_{i}\nasymp L_{i}$
that is $L\in\GR\prod^{\mathsf{Strd}(\mathscr{F})}a$.
So $f\sqsubseteq\prod^{\mathsf{Strd}(\mathscr{F})}a$ and thus $\prod^{\mathsf{Strd}(\mathscr{F})}a$ is the greatest lower bound of $\setcond{\prod^{\mathsf{Strd}(\mathscr{F})}A}{A\in S}$.\end{proof}
\begin{conjecture}
Let $\mathscr{F}$ be a family of sets of filters on meet-semilattices
with least elements. Let $a\in\prod\mathscr{F}$, $S\in\subsets\prod\mathscr{F}$
be a generalized filter base, $\bigsqcap S=a$, $f$ is a staroid
of the form $\prod\mathscr{F}$. Then
\[
\prod^{\mathsf{Strd}(\mathscr{F})}a\nasymp f\Leftrightarrow\forall A\in S:\prod^{\mathsf{Strd}(\mathfrak{Z})}A\nasymp f.
\]
\end{conjecture}
\section{On products of staroids}
\begin{defn}
\index{product!reindexation}$\prod^{(D)}F=\setcond{\uncurry z}{z\in\prod F}$
(\emph{reindexation product}) for every indexed family $F$ of relations.
\end{defn}
\begin{defn}
\index{product!reindexation}\emph{Reindexation product} of an indexed
family $F$ of anchored relations is defined by the formulas:
\[
\form\prod^{(D)}F=\uncurry(\form\circ F)\hspace{1em}\text{and}\hspace{1em}\GR\prod^{(D)}F=\prod^{(D)}(\GR\circ F).
\]
\end{defn}
\begin{obvious}
~
\begin{enumerate}
\item $\form\prod^{(D)}F=\setcond{((i,j),(\form F_{i})_{j})}{i\in\dom F,j\in\arity F_{i}}$;
\item $\GR\prod^{(D)}F=\setcond{\setcond{((i,j),(zi)j)}{i\in\dom F,j\in\arity F_{i}}}{z\in\prod(\GR\circ F)}$.
\end{enumerate}
\end{obvious}
\begin{prop}
$\prod^{(D)}F$ is an anchored relation if every $F_{i}$ is an anchored
relation.\end{prop}
\begin{proof}
We need to prove $\GR\prod^{(D)}F\in\subsets\prod\form\left(\prod^{(D)}F\right)$
that is
$\GR\prod^{(D)}F\subseteq\prod\form\left(\prod^{(D)}F\right)$; $\setcond{\setcond{((i,j),(zi)j)}{i\in\dom F,j\in\arity F_{i}}}{z\in\prod(\GR\circ F)}\subseteq\prod\setcond{((i,j),(\form F_{i})_{j})}{i\in\dom F,j\in\arity F_{i}}$;
$\forall z\in\prod(\GR\circ F),i\in\dom F,j\in\arity F_{i}:(zi)j\in(\form F_{i})_{j}$.
Really, $zi\in\GR F_{i}\subseteq\prod(\form F_{i})$ and thus $(zi)j\in(\form F_{i})_{j}$.\end{proof}
\begin{obvious}
$\arity\prod^{(D)}F=\coprod_{i\in\dom F}\arity F_{i}=\setcond{(i,j)}{i\in\dom F,j\in\arity F_{i}}$.\end{obvious}
\begin{defn}
$f\times^{(D)}g=\prod^{(D)}\llbracket f,g\rrbracket$.\end{defn}
\begin{lem}
$\prod^{(D)}F$ is an upper set if every $F_{i}$ is an upper set.\end{lem}
\begin{proof}
We need to prove that $\prod^{(D)}F$ is an upper set. Let $a\in\prod^{(D)}F$
and an anchored relation $b\sqsupseteq a$ of the same form as $a$.
We have $a=\uncurry z$ for some $z\in\prod F$ that is $a(i,j)=(zi)j$
for all $i\in\dom F$ and $j\in\dom F_{i}$ where $zi\in F_{i}$.
Also $b(i,j)\sqsupseteq a(i,j)$. Thus $(\curry b)i\sqsupseteq zi$;
$\curry b\in\prod F$ because every $F_{i}$ is an upper set and so
$b\in\prod^{(D)}F$.\end{proof}
\begin{prop}