-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-filt.tex
5931 lines (5234 loc) · 241 KB
/
chap-filt.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{\label{chap-filt}Filters and filtrators}
This chapter is based on my article \cite{filters}.
This chapter is grouped in the following way:
\begin{itemize}
\item First it goes a short introduction in pedagogical order (first less
general stuff and examples, last the most general stuff):
\begin{itemize}
\item filters on a set;
\item filters on a meet-semilattice;
\item filters on a poset.
\end{itemize}
\item Then it goes the formal part.
\end{itemize}
\section{Implication tuples}
\begin{defn}
An \emph{implications tuple} is a tuple $(P_{1},\ldots,P_{n})$ such
that $P_{1}\Rightarrow\ldots\Rightarrow P_{n}$.\end{defn}
\begin{obvious}
$(P_{1},\ldots,P_{n})$ is an implications tuple iff $P_{i}\Rightarrow P_{j}$
for every $i<j$ (where $i,j\in\{1,\ldots,n\}$).
\end{obvious}
The following is an example of a theorem using an implication tuple:
\begin{example}
The following is an implications tuple:
\begin{enumerate}
\item $A$.
\item $B$.
\item $C$.
\end{enumerate}
\end{example}
This example means just that $A\Rightarrow B\Rightarrow C$.
I prefer here a verbal description instead of symbolic implications
$A\Rightarrow B\Rightarrow C$, because $A$, $B$, $C$ may be long
English phrases and they may not fit into the formula layout.
The main (intuitive) idea of the theorem is expressed by the implication
$P_{1}\Rightarrow P_{n}$, the rest implications ($P_{2}\Rightarrow P_{n}$,
$P_{3}\Rightarrow P_{n}$, ...) are purely technical, as they express
generalizations of the main idea.
For uniformity theorems in the section about filters and filtrators
start with the same $P_{1}$: ``$(\mathfrak{A},\mathfrak{Z})$ is
a powerset filtrator.'' (defined below) That means that the main
idea of the theorem is about powerset filtrators, the rest implications
(like $P_{2}\Rightarrow P_{n}$, $P_{3}\Rightarrow P_{n}$, ...) are
just technical generalizations.
\section{Introduction to filters and filtrators}
\subsection{Filters on a set}
We sometimes want to define something resembling an infinitely small
(or infinitely big) set, for example the infinitely small interval
near $0$ on the real line. Of course there is no such set, just like
as there is no natural number which is the difference $2-3$. To overcome
this shortcoming we introduce whole numbers, and $2-3$ becomes well
defined. In the same way to consider things which are like infinitely
small (or infinitely big) sets we introduce \emph{filters}.
An example of a filter is the infinitely small interval near $0$
on the real line. To come to infinitely small, we consider all intervals
$]-\epsilon;\epsilon[$ for all $\epsilon>0$. This filter consists
of all intervals $]-\epsilon;\epsilon[$ for all $\epsilon>0$ and
also all subsets of $\mathbb{R}$ containing such intervals as subsets.
Informally speaking, this is the greatest filter contained in every
interval $]-\epsilon;\epsilon[$ for all $\epsilon>0$.
\begin{defn}
\index{filter!on a set}A filter on a set $\mho$ is a $\mathcal{F}\in\subsets\subsets\mho$
such that:
\begin{enumerate}
\item $\forall A,B\in\mathcal{F}:A\cap B\in\mathcal{F}$;
\item $\forall A,B\in\subsets\mho:(A\in\mathcal{F}\land B\supseteq A\Rightarrow B\in\mathcal{F})$.
\end{enumerate}
\end{defn}
\begin{xca}
Verify that the above introduced infinitely small interval near $0$
on the real line is a filter on $\mathbb{R}$.
\end{xca}
\begin{xca}
Describe ``the neighborhood of positive infinity'' filter on $\mathbb{R}$.\end{xca}
\begin{defn}
\index{filter!proper}A filter not containing empty set is called
a \emph{proper filter}.\end{defn}
\begin{obvious}
The non-proper filter is $\subsets\mho$.\end{obvious}
\begin{rem}
Some other authors require that all filters are proper. This is a
stupid idea and we allow non-proper filters, in the same way as we
allow to use the number~$0$.
\end{rem}
\subsection{Intro to filters on a meet-semilattice}
A trivial generalization of the above:
\begin{defn}
\index{filter!on a meet-semilattice}A filter on a meet-semilattice
$\mathfrak{Z}$ is a $\mathcal{F}\in\subsets\mathfrak{Z}$ such that:
\begin{enumerate}
\item $\forall A,B\in\mathcal{F}:A\sqcap B\in\mathcal{F}$;
\item $\forall A,B\in\mathfrak{Z}:(A\in\mathcal{F}\land B\sqsupseteq A\Rightarrow B\in\mathcal{F})$.
\end{enumerate}
\end{defn}
\subsection{Intro to filters on a poset}
\begin{defn}
\index{filter!on a poset}A filter on a poset~$\mathfrak{Z}$ is
a $\mathcal{F}\in\subsets\mathfrak{Z}$ such that:
\begin{enumerate}
\item $\forall A,B\in\mathcal{F}\exists C\in\mathcal{F}:C\sqsubseteq A,B$;
\item $\forall A,B\in\mathfrak{Z}:(A\in\mathcal{F}\land B\sqsupseteq A\Rightarrow B\in\mathcal{F})$.
\end{enumerate}
\end{defn}
It is easy to show (and there is a proof of it somewhere below) that
this coincides with the above definition in the case if $\mathfrak{Z}$
is a meet-semilattice.
\section{Filters on a poset}
\subsection{Filters on posets}
Let $\mathfrak{Z}$ be a poset.
\begin{defn}
\index{filter base}\emph{Filter base} is a nonempty subset $F$ of
$\mathfrak{Z}$ such that
\[
\forall X,Y\in F\exists Z\in F:(Z\sqsubseteq X\land Z\sqsubseteq Y).
\]
\end{defn}
\begin{defn}
\index{ideal base}\emph{Ideal base} is a nonempty subset $F$ of
$\mathfrak{Z}$ such that
\[
\forall X,Y\in F\exists Z\in F:(Z\sqsupseteq X\land Z\sqsupseteq Y).
\]
\end{defn}
\begin{obvious}
Ideal base is the dual of filter base.
\end{obvious}
\begin{obvious}
~
\begin{enumerate}
\item A poset with a lowest element is a filter base.
\item A poset with a greatest element is an ideal base.
\end{enumerate}
\end{obvious}
\begin{obvious}
~
\begin{enumerate}
\item A meet-semilattice is a filter base.
\item A join-semilattice is an ideal base.
\end{enumerate}
\end{obvious}
\begin{obvious}
A nonempty chain is a filter base and an ideal base.\end{obvious}
\begin{defn}
\index{filter!on poset}\emph{Filter} is a subset of $\mathfrak{Z}$
which is both a filter base and an upper set.
\end{defn}
I will denote the set of filters (for a given or implied poset $\mathfrak{Z}$)
as $\mathfrak{F}$ and call $\mathfrak{F}$ the set of filters over
the poset $\mathfrak{Z}$.
\begin{prop}
If $\top$ is the maximal element of $\mathfrak{Z}$ then $\top\in F$
for every filter~$F$.\end{prop}
\begin{proof}
If $\top\notin F$ then $\forall K\in\mathfrak{Z}:K\notin F$ and
so $F$ is empty what is impossible.\end{proof}
\begin{prop}
Let $S$ be a filter base on a poset. If $A_{0},\ldots,A_{n}\in S$
($n\in\mathbb{N}$), then
\[
\exists C\in S:(C\sqsubseteq A_{0}\land\ldots\land C\sqsubseteq A_{n}).
\]
\end{prop}
\begin{proof}
It can be easily proved by induction.\end{proof}
\begin{defn}
A function~$f$ from a poset~$\mathfrak{A}$ to a poset~$\mathfrak{B}$
\emph{preserves filtered meets} iff whenever $\bigsqcap S$ is defined
for a filter base~$S$ on~$\mathfrak{A}$ we have $f\bigsqcap S=\bigsqcap\rsupfun fS$.
\end{defn}
\subsection{Filters on meet-semilattices}
\begin{thm}
\label{filt-eq-char}\index{filter!on meet-semilattice}If $\mathfrak{Z}$
is a meet-semilattice and $F$ is a nonempty subset of $\mathfrak{Z}$
then the following conditions are equivalent:
\begin{enumerate}
\item \label{fmslat-filt}$F$ is a filter.
\item \label{fmslat-two}$\forall X,Y\in F:X\sqcap Y\in F$ and $F$ is
an upper set.
\item \label{fmslat-one}$\forall X,Y\in\mathfrak{Z}:(X,Y\in F\Leftrightarrow X\sqcap Y\in F)$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{description}
\item [{\ref{fmslat-filt}$\Rightarrow$\ref{fmslat-two}}] Let $F$ be
a filter. Then $F$ is an upper set. If $X,Y\in F$ then $Z\sqsubseteq X\land Z\sqsubseteq Y$
for some $Z\in F$. Because $F$ is an upper set and $Z\sqsubseteq X\sqcap Y$
then $X\sqcap Y\in F$.
\item [{\ref{fmslat-two}$\Rightarrow$\ref{fmslat-filt}}] Let $\forall X,Y\in F:X\sqcap Y\in F$
and $F$ be an upper set. We need to prove that $F$ is a filter base.
But it is obvious taking $Z=X\sqcap Y$ (we have also taken into account
that $F\ne\emptyset$).
\item [{\ref{fmslat-two}$\Rightarrow$\ref{fmslat-one}}] Let $\forall X,Y\in F:X\sqcap Y\in F$
and $F$ be an upper set. Then
\[
\forall X,Y\in\mathfrak{Z}:(X,Y\in F\Rightarrow X\sqcap Y\in F).
\]
Let $X\sqcap Y\in F$; then $X,Y\in F$ because $F$ is an upper set.
\item [{\ref{fmslat-one}$\Rightarrow$\ref{fmslat-two}}] Let
\[
\forall X,Y\in\mathfrak{Z}:(X,Y\in F\Leftrightarrow X\sqcap Y\in F).
\]
Then $\forall X,Y\in F:X\sqcap Y\in F$. Let $X\in F$ and $X\sqsubseteq Y\in\mathfrak{Z}$.
Then $X\sqcap Y=X\in F$. Consequently $X,Y\in F$. So $F$ is an
upper set.
\end{description}
\end{proof}
\begin{prop}
Let $S$ be a filter base on a meet-semilattice. If $A_{0},\ldots,A_{n}\in S$
($n\in\mathbb{N}$), then
\[
\exists C\in S:C\sqsubseteq A_{0}\sqcap\dots\sqcap A_{n}.
\]
\end{prop}
\begin{proof}
It can be easily proved by induction.\end{proof}
\begin{prop}
If $\mathfrak{Z}$ is a meet-semilattice and $S$ is a filter base
on it, $A\in\mathfrak{Z}$, then $\rsupfun{A\sqcap}S$ is also a filter
base.\end{prop}
\begin{proof}
$\rsupfun{A\sqcap}S\ne\emptyset$ because $S\ne\emptyset$.
Let $X,Y\in\rsupfun{A\sqcap}S$. Then $X=A\sqcap X'$ and $Y=A\sqcap Y'$
where $X',Y'\in S$. There exists $Z'\in S$ such that $Z'\sqsubseteq X'\sqcap Y'$
. So $X\sqcap Y=A\sqcap X'\sqcap Y'\sqsupseteq A\sqcap Z'\in\rsupfun{A\sqcap}S$.
\end{proof}
\subsection{Order of filters. Principal filters}
I will make the set of filters $\mathfrak{F}$ into a poset by the
order defined by the formula: $a\sqsubseteq b\Leftrightarrow a\supseteq b$.
\begin{defn}
\index{filter!principal}The principal filter corresponding to an
element $a\in\mathfrak{Z}$ is
\[
\uparrow a=\setcond{x\in\mathfrak{Z}}{x\sqsupseteq a}.
\]
Elements of $\mathfrak{P}=\rsupfun{\uparrow}\mathfrak{Z}$ are called
\emph{principal filters}.\end{defn}
\begin{obvious}
Principal filters are filters.
\end{obvious}
\begin{obvious}
$\uparrow$ is an order embedding from $\mathfrak{Z}$ to $\mathfrak{F}$.\end{obvious}
\begin{cor}
$\uparrow$ is an order isomorphism between $\mathfrak{Z}$ and $\mathfrak{P}$.
\end{cor}
We will equate principal filters with corresponding elements of the
base poset (in the same way as we equate for example nonnegative whole
numbers and natural numbers).
\begin{prop}
$\uparrow K\sqsupseteq\mathcal{A}\Leftrightarrow K\in\mathcal{A}$.\end{prop}
\begin{proof}
$\uparrow K\sqsupseteq\mathcal{A}\Leftrightarrow\uparrow K\subseteq\mathcal{A}\Leftrightarrow K\in\mathcal{A}$.
\end{proof}
\section{Filters on a Set}
Consider filters on the poset $\mathfrak{Z}=\subsets\mathfrak{U}$
(where $\mathfrak{U}$ is some fixed set) with the order $A\sqsubseteq B\Leftrightarrow A\subseteq B$
(for $A,B\in\subsets\mathfrak{A}$).
In fact, it is a complete atomistic boolean lattice with $\bigsqcap S=\bigcap S$,
$\bigsqcup S=\bigcup S$, $\overline{A}=\mathfrak{U}\setminus A$
for every $S\in\subsets\subsets\mathfrak{U}$ and $A\in\subsets\mathfrak{U}$,
atoms being one-element sets.
\begin{defn}
\index{filter!on set}\index{filter!on powerset}I will call a filter
on the lattice of all subsets of a given set $\mathfrak{U}$ as a
\emph{filter on set}.
\end{defn}
\begin{defn}
I will denote the set on which a filter $\mathcal{F}$ is defined
as $\Base(\mathcal{F})$.\end{defn}
\begin{obvious}
$\Base(\mathcal{F})=\bigcup\mathcal{F}$.\end{obvious}
\begin{prop}
The following are equivalent for a non-empty set $F\in\subsets\subsets\mathfrak{U}$:
\begin{enumerate}
\item $F$ is a filter.
\item $\forall X,Y\in F:X\cap Y\in F$ and $F$ is an upper set.
\item $\forall X,Y\in\subsets\mathfrak{U}:(X,Y\in F\Leftrightarrow X\cap Y\in F)$.
\end{enumerate}
\end{prop}
\begin{proof}
By theorem \ref{filt-eq-char}.\end{proof}
\begin{obvious}
The minimal filter on $\subsets\mathfrak{U}$ is $\subsets\mathfrak{U}$.
\end{obvious}
\begin{obvious}
The maximal filter on $\subsets\mathfrak{U}$ is $\{\mathfrak{U}\}$.
\end{obvious}
I will denote $\uparrow A=\uparrow^{\mathfrak{U}}A=\uparrow^{\subsets\mathfrak{U}}A$.
(The distinction between conflicting notations $\uparrow^{\mathfrak{U}}A$
and $\uparrow^{\subsets\mathfrak{U}}A$ will be clear from the context.)
\begin{prop}
Every filter on a finite set is principal.\end{prop}
\begin{proof}
Let $\mathcal{F}$ be a filter on a finite set. Then obviously $\mathcal{F}=\bigsqcap^{\mathfrak{Z}}\up\mathcal{F}$
and thus $\mathcal{F}$ is principal.
\end{proof}
\section{Filtrators}
$(\mathfrak{F},\mathfrak{P})$ is a poset and its subset (with induced
order on the subset). I call pairs of a poset and its subset like
this \emph{filtrators}.
\begin{defn}
\index{filtrator}I will call a \emph{filtrator} a pair $(\mathfrak{A},\mathfrak{Z})$
of a poset $\mathfrak{A}$ and its subset $\mathfrak{Z}\subseteq\mathfrak{A}$.
I call $\mathfrak{A}$ the \emph{base} of the filtrator and $\mathfrak{Z}$
the \emph{core} of the filtrator. I will also say that $(\mathfrak{A},\mathfrak{Z})$
is a filtrator \emph{over} poset $\mathfrak{Z}$.
I will denote $\base(\mathfrak{A},\mathfrak{Z})=\mathfrak{A}$, $\core(\mathfrak{A},\mathfrak{Z})=\mathfrak{Z}$
for a filtrator $(\mathfrak{A},\mathfrak{Z})$.
\end{defn}
While \emph{filters} are customary and well known mathematical objects,
the concept of \emph{filtrators} is probably first researched by me.
When speaking about filters, we will imply that we consider the filtrator
$(\mathfrak{F},\mathfrak{P})$ or what is the same (as we equate principal
filters with base elements) the filtrator $(\mathfrak{F},\mathfrak{Z})$.
\begin{defn}
\index{filtrator!lattice}I will call a \emph{lattice filtrator} a
pair $(\mathfrak{A},\mathfrak{Z})$ of a lattice $\mathfrak{A}$ and
its subset $\mathfrak{Z}\subseteq\mathfrak{A}$.
\end{defn}
\begin{defn}
\index{filtrator!complete lattice}I will call a \emph{complete lattice
filtrator} a pair $(\mathfrak{A},\mathfrak{Z})$ of a complete lattice
$\mathfrak{A}$ and its subset $\mathfrak{Z}\subseteq\mathfrak{A}$.
\end{defn}
\begin{defn}
\index{filtrator!central}I will call a \emph{central filtrator} a
filtrator $(\mathfrak{A},Z(\mathfrak{A}))$ where $Z(\mathfrak{A})$
is the center of a bounded lattice $\mathfrak{A}$.
\end{defn}
\begin{defn}
\index{element!of filtrator}I will call \emph{element} of a filtrator
an element of its base.
\end{defn}
\begin{defn}
$\up^{\mathfrak{Z}}a=\up a=\setcond{c\in\mathfrak{Z}}{c\sqsupseteq a}$
for an element $a$ of a filtrator.
\end{defn}
\begin{defn}
$\down^{\mathfrak{Z}}a=\down a=\setcond{c\in\mathfrak{Z}}{c\sqsubseteq a}$
for an element $a$ of a filtrator.\end{defn}
\begin{obvious}
``$\up$'' and ``$\down$'' are dual.
\end{obvious}
Our main purpose here is knowing properties of the core of a filtrator
to infer properties of the base of the filtrator, specifically properties
of $\up a$ for every element~$a$.
\begin{defn}
\index{filtrator!with join-closed core}I call a filtrator \emph{with
join-closed core} such a filtrator $(\mathfrak{A},\mathfrak{Z})$
that $\bigsqcup^{\mathfrak{Z}}S=\bigsqcup^{\mathfrak{A}}S$ whenever
$\bigsqcup^{\mathfrak{Z}}S$ exists for $S\in\subsets\mathfrak{Z}$.
\end{defn}
\begin{defn}
\index{filtrator!with meet-closed core}I call a filtrator \emph{with
meet-closed core} such a filtrator $(\mathfrak{A},\mathfrak{Z})$
that $\bigsqcap^{\mathfrak{Z}}S=\bigsqcap^{\mathfrak{A}}S$ whenever
$\bigsqcap^{\mathfrak{Z}}S$ exists for $S\in\subsets\mathfrak{Z}$.
\end{defn}
\begin{defn}
\index{filtrator!with binarily join-closed core}I call a filtrator
with \emph{binarily join-closed core} such a filtrator $(\mathfrak{A},\mathfrak{Z})$
that $a\sqcup^{\mathfrak{Z}}b=a\sqcup^{\mathfrak{A}}b$ whenever $a\sqcup^{\mathfrak{Z}}b$
exists for $a,b\in\mathfrak{Z}$.
\end{defn}
\begin{defn}
\index{filtrator!with binarily meet-closed core}I call a filtrator
with \emph{binarily meet-closed core} such a filtrator $(\mathfrak{A},\mathfrak{Z})$
that $a\sqcap^{\mathfrak{Z}}b=a\sqcap^{\mathfrak{A}}b$ whenever
$a\sqcap^{\mathfrak{Z}}b$ exists for $a,b\in\mathfrak{Z}$.
\end{defn}
\begin{defn}
\index{filtrator!prefiltered}\emph{Prefiltered filtrator} is a filtrator
$(\mathfrak{A},\mathfrak{Z})$ such that ``$\up$'' is injective.
\end{defn}
\begin{defn}
\index{filtrator!filtered}\emph{Filtered filtrator} is a filtrator
$(\mathfrak{A},\mathfrak{Z})$ such that
\[
\forall a,b\in\mathfrak{A}:(\up a\supseteq\up b\Rightarrow a\sqsubseteq b).
\]
\end{defn}
\begin{thm}
A filtrator $(\mathfrak{A},\mathfrak{Z})$ is filtered iff $\forall a\in\mathfrak{A}:a=\bigsqcap^{\mathfrak{A}}\up a$.\end{thm}
\begin{proof}
~
\begin{description}
\item [{$\Leftarrow$}] $\up a\supseteq\up b\Rightarrow\bigsqcap^{\mathfrak{A}}\up a\sqsubseteq\bigsqcap^{\mathfrak{A}}\up b\Rightarrow a\sqsubseteq b$.
\item [{$\Rightarrow$}] $a=\bigsqcap^{\mathfrak{A}}\up a$ is equivalent
to $a$ is a greatest lower bound of $\up a$. That is the implication
that $b$ is lower bound of $\up a$ implies $a\sqsupseteq b$.
$b$ is lower bound of $\up a$ implies $\up b\supseteq\up a$. So
as it is filtered $a\sqsupseteq b$.
\end{description}
\end{proof}
\begin{obvious}
Every filtered filtrator is prefiltered.
\end{obvious}
\begin{obvious}
\label{up-straight}``$\up$'' is a straight map from $\mathfrak{A}$
to the dual of the poset $\subsets\mathfrak{Z}$ if $(\mathfrak{A},\mathfrak{Z})$
is a filtered filtrator.\end{obvious}
\begin{defn}
An \emph{isomorphism} between filtrators $(\mathfrak{A}_{0},\mathfrak{Z}_{0})$
and $(\mathfrak{A}_{1},\mathfrak{Z}_{1})$ is an isomorphism between
posets~$\mathfrak{A}_{0}$ and~$\mathfrak{A}_{1}$ such that it
maps $\mathfrak{Z}_{0}$ into $\mathfrak{Z}_{1}$.\end{defn}
\begin{obvious}
Isomorphism isomorphically maps the order on $\mathfrak{Z}_{0}$ into
order on~$\mathfrak{Z}_{1}$.\end{obvious}
\begin{defn}
Two filtrators are \emph{isomorphic} when there exists an isomorphism
between them.
\end{defn}
\begin{defn}
I will call \emph{primary filtrator} a filtrator isomorphic to the
filtrator consisting of the set of filters on a poset and the set
of principal filters on this poset.\end{defn}
\begin{obvious}
The order on a primary filtrator is defined by the formula $a\sqsubseteq b\Leftrightarrow\up a\supseteq\up b$.\end{obvious}
\begin{defn}
\index{filtrator!powerset}I will call a primary filtrator over a
poset isomorphic to a powerset as \emph{powerset filtrator}.\end{defn}
\begin{obvious}
$\up\mathcal{F}$ is a filter for every element~$\mathcal{F}$ of
a primary filtrator. Reversely, there exists a filter $\mathcal{F}$
if $\up\mathcal{F}$ is a filter.\end{obvious}
\begin{thm}
\label{thm1:prim-exists}For every poset~$\mathfrak{Z}$ there exists
a poset $\mathfrak{A}\supseteq\mathfrak{Z}$ such that $(\mathfrak{A},\mathfrak{Z})$
is a primary filtrator.\end{thm}
\begin{proof}
See appendix~\ref{app:prim-exists}.
\end{proof}
\subsection{Filtrators with Separable Core}
\begin{defn}
\index{filtrator!with separable core}Let $(\mathfrak{A},\mathfrak{Z})$
be a filtrator. It is a \emph{filtrator with separable core} when
\[
\forall x,y\in\mathfrak{A}:(x\asymp^{\mathfrak{A}}y\Rightarrow\exists X\in\up x:X\asymp^{\mathfrak{A}}y).
\]
\end{defn}
\begin{prop}
Let $(\mathfrak{A},\mathfrak{Z})$ be a filtrator. It is a \emph{filtrator
with separable core} iff
\[
\forall x,y\in\mathfrak{A}:(x\asymp^{\mathfrak{A}}y\Rightarrow\exists X\in\up x,Y\in\up y:X\asymp^{\mathfrak{A}}Y).
\]
\end{prop}
\begin{proof}
~
\begin{description}
\item [{$\Rightarrow$}] Apply the definition twice.
\item [{$\Leftarrow$}] Obvious.
\end{description}
\end{proof}
\begin{defn}
\index{filtrator!with co-separable core}Let $(\mathfrak{A},\mathfrak{Z})$
be a filtrator. It is a \emph{filtrator with co-separable core} when
\[
\forall x,y\in\mathfrak{A}:(x\equiv^{\mathfrak{A}}y\Rightarrow\exists X\in\down x:X\equiv^{\mathfrak{A}}y).
\]
\end{defn}
\begin{obvious}
Co-separability is the dual of separability.\end{obvious}
\begin{defn}
\index{filtrator!with co-separable core}Let $(\mathfrak{A},\mathfrak{Z})$
be a filtrator. It is a \emph{filtrator with co-separable core} when
\[
\forall x,y\in\mathfrak{A}:(x\equiv^{\mathfrak{A}}y\Rightarrow\exists X\in\down x,Y\in\down y:X\equiv^{\mathfrak{A}}Y).
\]
\end{defn}
\begin{proof}
By duality.
\end{proof}
\section{Alternative primary filtrators}
\subsection{Lemmas}
\begin{lem}
A set $F$ is a lower set iff $\overline{F}$ is an upper set.\end{lem}
\begin{proof}
$X\in\overline{F}\wedge Z\sqsupseteq X\Rightarrow Z\in\overline{F}$
is equivalent to $Z\in F\Rightarrow X\in F\vee Z\nsqsupseteq X$ is
equivalent $Z\in F\Rightarrow(Z\sqsupseteq X\Rightarrow X\in F)$
is equivalent $Z\in F\wedge X\sqsubseteq Z\Rightarrow X\in F$.\end{proof}
\begin{prop}
Let $\mathfrak{Z}$ be a poset with least element~$\bot$. Then for
upper set~$F$ we have $F\ne\subsets\mathfrak{Z}\Leftrightarrow\bot\notin F$.\end{prop}
\begin{proof}
~
\begin{description}
\item [{$\Rightarrow$}] If $\bot\in F$ then $F=\subsets\mathfrak{Z}$
because $F$ is an upper set.
\item [{$\Leftarrow$}] Obvious.
\end{description}
\end{proof}
\subsection{Informal introduction}
We have already defined filters on a poset. Now we will define three
other sets which are order-isomorphic to the set of filters on a poset:
ideals ($\mathfrak{I}$), free stars ($\mathfrak{S}$), and mixers
($\mathfrak{M}$).
These four kinds of objects are related through commutative diagrams.
First we will paint an informal commutative diagram (it makes no formal
sense because it is not pointed the poset for which the filters are
defined):\[
\begin{tikzcd}
\mathfrak{F}
\arrow[d, leftrightarrow, "\lnot"]
\arrow[r, leftrightarrow, "\rsupfun{\dual}"]
& \mathfrak{I} \arrow[d, leftrightarrow, "\lnot"] \\
\mathfrak{M}
\arrow[r, leftrightarrow, "\rsupfun{\dual}"]
& \mathfrak{S}
\end{tikzcd}
\]
Then we can define ideals, free stars, and mixers as sets following
certain formulas. You can check that the intuition behind these formulas
follows the above commutative diagram. (That is transforming these
formulas by the course of the above diagram, you get formulas of the
other objects in this list.)
After this, we will paint some formal commutative diagrams similar
to the above diagram but with particular posets at which filters,
ideals, free stars, and mixers are defined.
\subsection{Definitions of ideals, free stars, and mixers}
\emph{Filters} and \emph{ideals} are well known concepts. The terms
\emph{free stars} and \emph{mixers} are my new terminology.
Recall that \emph{filters} are nonempty sets $F$ with $A,B\in F\Leftrightarrow\exists Z\in F:(Z\sqsubseteq A\wedge Z\sqsubseteq B)$
(for every $A,B\in\mathfrak{Z}$).
\begin{defn}
\emph{Ideals} are nonempty sets $F$ with $A,B\in F\Leftrightarrow\exists Z\in F:(Z\sqsupseteq A\wedge Z\sqsupseteq B)$
(for every $A,B\in\mathfrak{Z}$).
\end{defn}
\begin{defn}
\emph{Free stars} are sets $F$ not equal to $\subsets\mathfrak{Z}$
with $A,B\in\overline{F}\Leftrightarrow\exists Z\in\overline{F}:(Z\sqsupseteq A\wedge Z\sqsupseteq B)$
(for every $A,B\in\mathfrak{Z}$).
\end{defn}
\begin{defn}
\emph{Mixers} are sets $F$ not equal to $\subsets\mathfrak{Z}$ with
$A,B\in\overline{F}\Leftrightarrow\exists Z\in\overline{F}:(Z\sqsubseteq A\wedge Z\sqsubseteq B)$
(for every $A,B\in\mathfrak{Z}$).
\end{defn}
By duality and and an above theorem about filters, we have:
\begin{prop}
~
\begin{itemize}
\item Filters are nonempty upper sets $F$ with $A,B\in F\Rightarrow\exists Z\in F:(Z\sqsubseteq A\wedge Z\sqsubseteq B)$
(for every $A,B\in\mathfrak{Z}$).
\item Ideals are nonempty lower sets $F$ with $A,B\in F\Rightarrow\exists Z\in F:(Z\sqsupseteq A\wedge Z\sqsupseteq B)$
(for every $A,B\in\mathfrak{Z}$).
\item Free stars are upper sets $F$ not equal to $\subsets\mathfrak{Z}$
with $A,B\in\overline{F}\Rightarrow\exists Z\in\overline{F}:(Z\sqsupseteq A\wedge Z\sqsupseteq B)$
(for every $A,B\in\mathfrak{Z}$).
\item Mixers are lower sets $F$ not equal to $\subsets\mathfrak{Z}$ with
$A,B\in\overline{F}\Rightarrow\exists Z\in\overline{F}:(Z\sqsubseteq A\wedge Z\sqsubseteq B)$
(for every $A,B\in\mathfrak{Z}$).
\end{itemize}
\end{prop}
\begin{prop}
The following are equivalent:
\begin{enumerate}
\item \label{free-alt-star}$F$ is a free star.
\item \label{free-alt-eq}$\forall Z\in\mathfrak{Z}:(Z\sqsupseteq A\wedge Z\sqsupseteq B\Rightarrow Z\in F)\Leftrightarrow A\in F\vee B\in F$
for every $A,B\in\mathfrak{Z}$ and $F\neq\subsets\mathfrak{Z}$.
\item \label{free-alt-impl}$\forall Z\in\mathfrak{Z}:(Z\sqsupseteq A\wedge Z\sqsupseteq B\Rightarrow Z\in F)\Rightarrow A\in F\vee B\in F$
for every $A,B\in\mathfrak{Z}$ and $F$ is an upper set and $F\neq\subsets\mathfrak{Z}$.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{description}
\item [{\ref{free-alt-star}$\Leftrightarrow$\ref{free-alt-eq}}] The following
is a chain of equivalencies:
\begin{gather*}
\exists Z\in\overline{F}:(Z\sqsupseteq A\wedge Z\sqsupseteq B)\Leftrightarrow A\notin F\wedge B\notin F;\\
\forall Z\in\overline{F}:\neg(Z\sqsupseteq A\wedge Z\sqsupseteq B)\Leftrightarrow A\in F\vee B\in F;\\
\forall Z\in\mathfrak{Z}:(Z\notin F\Rightarrow\neg(Z\sqsupseteq A\wedge Z\sqsupseteq B))\Leftrightarrow A\in F\vee B\in F;\\
\forall Z\in\mathfrak{Z}:(Z\sqsupseteq A\wedge Z\sqsupseteq B\Rightarrow Z\in F)\Leftrightarrow A\in F\vee B\in F.
\end{gather*}
\item [{\ref{free-alt-eq}$\Rightarrow$\ref{free-alt-impl}}]
Let $A=B\in F$. Then $A\in F\lor B\in F$. So $\forall Z\in\mathfrak{Z}:(Z\sqsupseteq A\wedge Z\sqsupseteq B\Rightarrow Z\in F)$
that is $\forall Z\in\mathfrak{Z}:(Z\sqsupseteq A\Rightarrow Z\in F)$ that is $F$ is an upper set.
\item [{\ref{free-alt-impl}$\Rightarrow$\ref{free-alt-eq}}] We need
to prove that $F$ is an upper set. let $A\in F$ and $A\sqsubseteq B\in\mathfrak{Z}$.
Then $A\in F\lor B\in F$ and thus $\forall Z\in\mathfrak{Z}:(Z\sqsupseteq A\wedge Z\sqsupseteq B\Rightarrow Z\in F)$
that is $\forall Z\in\mathfrak{Z}:(Z\sqsupseteq B\Rightarrow Z\in F)$
and so $B\in F$.
\end{description}
\end{proof}
\begin{cor}
The following are equivalent:
\begin{enumerate}
\item $F$ is a mixer.
\item $\forall Z\in\mathfrak{Z}:(Z\sqsubseteq A\wedge Z\sqsubseteq B\Rightarrow Z\in F)\Leftrightarrow A\in F\vee B\in F$
for every $A,B\in\mathfrak{Z}$ and $F\neq\subsets\mathfrak{Z}$.
\item $\forall Z\in\mathfrak{Z}:(Z\sqsubseteq A\wedge Z\sqsubseteq B\Rightarrow Z\in F)\Rightarrow A\in F\vee B\in F$
for every $A,B\in\mathfrak{Z}$ and $F$ is an lower set and $F\neq\subsets\mathfrak{Z}$.
\end{enumerate}
\end{cor}
\begin{obvious}
~
\begin{enumerate}
\item A free star cannot contain the least element of the poset.
\item A mixer cannot contain the greatest element of the poset.
\end{enumerate}
\end{obvious}
\subsection{Filters, ideals, free stars, and mixers on semilattices}
\begin{prop}
~
\begin{itemize}
\item Free stars are sets $F$ not equal to $\subsets\mathfrak{Z}$ with
$A\in F\lor B\in F\Leftrightarrow\lnot\exists Z\in\overline{F}:(Z\sqsupseteq A\wedge Z\sqsupseteq B)$
(for every $A,B\in\mathfrak{Z}$).
\item Free stars are upper sets $F$ not equal to $\subsets\mathfrak{Z}$
with $A\in F\lor B\in F\Leftarrow\lnot\exists Z\in\overline{F}:(Z\sqsupseteq A\wedge Z\sqsupseteq B)$
(for every $A,B\in\mathfrak{Z}$).
\item Mixers are sets $F$ not equal to $\subsets\mathfrak{Z}$ with $A\in F\lor B\in F\Leftrightarrow\lnot\exists Z\in\overline{F}:(Z\sqsubseteq A\wedge Z\sqsubseteq B)$
(for every $A,B\in\mathfrak{Z}$).
\item Mixers are lower sets $F$ not equal to $\subsets\mathfrak{Z}$ with
$A\in F\lor B\in F\Leftarrow\lnot\exists Z\in\overline{F}:(Z\sqsubseteq A\wedge Z\sqsubseteq B)$
(for every $A,B\in\mathfrak{Z}$).
\end{itemize}
\end{prop}
\begin{proof}
By duality.
\end{proof}
By duality and and an above theorem about filters, we have:
\begin{prop}
~
\begin{itemize}
\item Filters are nonempty sets $F$ with $A\sqcap B\in F\Leftrightarrow A\in F\land B\in F$
(for every $A,B\in\mathfrak{Z}$), whenever $\mathfrak{Z}$ is a meet-semilattice.
\item Ideals are nonempty sets $F$ with $A\sqcup B\in F\Leftrightarrow A\in F\land B\in F$
(for every $A,B\in\mathfrak{Z}$), whenever $\mathfrak{Z}$ is a join-semilattice.
\item Free stars are sets $F$ not equal to $\subsets\mathfrak{Z}$ with
$A\sqcup B\in F\Leftrightarrow A\in F\lor B\in F$ (for every $A,B\in\mathfrak{Z}$),
whenever $\mathfrak{Z}$ is a join-semilattice.
\item Mixers are sets $F$ not equal to $\subsets\mathfrak{Z}$ with $A\sqcap B\in F\Leftrightarrow A\in F\lor B\in F$
(for every $A,B\in\mathfrak{Z}$), whenever $\mathfrak{Z}$ is a meet-semilattice.
\end{itemize}
\end{prop}
By duality and and an above theorem about filters, we have:
\begin{prop}
~
\begin{itemize}
\item Filters are nonempty upper sets $F$ with $A\sqcap B\in F\Leftarrow A\in F\land B\in F$
(for every $A,B\in\mathfrak{Z}$), whenever $\mathfrak{Z}$ is a meet-semilattice.
\item Ideals are nonempty lower sets $F$ with $A\sqcup B\in F\Leftarrow A\in F\land B\in F$
(for every $A,B\in\mathfrak{Z}$), whenever $\mathfrak{Z}$ is a join-semilattice.
\item Free stars are upper sets $F$ not equal to $\subsets\mathfrak{Z}$
with $A\sqcup B\in F\Rightarrow A\in F\lor B\in F$ (for every $A,B\in\mathfrak{Z}$),
whenever $\mathfrak{Z}$ is a join-semilattice.
\item Mixers are lower sets $F$ not equal to $\subsets\mathfrak{Z}$ with
$A\sqcap B\in F\Rightarrow A\in F\lor B\in F$ (for every $A,B\in\mathfrak{Z}$),
whenever $\mathfrak{Z}$ is a meet-semilattice.
\end{itemize}
\end{prop}
\subsection{The general diagram}
Let $\mathfrak{A}$ and $\mathfrak{B}$ be two posets connected by
an order reversing isomorphism $\theta:\mathfrak{A}\rightarrow\mathfrak{B}$.
We have commutative diagram on the figure~\ref{theta-sets} in the
category $\mathbf{Set}$:
\begin{figure}[ht]
\begin{tikzcd}[row sep=1cm, column sep=2cm]
\subsets \mathfrak{A}
\arrow[d, leftrightarrow, "\lnot"]
\arrow[r, shift left, rightarrow, "\rsupfun{\theta}"]
& \subsets \mathfrak{B} \arrow[l, shift left, rightarrow, "\rsupfun{\theta^{-1}}"] \arrow[d, leftrightarrow, "\lnot"] \\
\subsets \mathfrak{A}
\arrow[r, shift left, rightarrow, "\rsupfun{\theta}"]
& \subsets \mathfrak{B} \arrow[l, shift left, rightarrow, "\rsupfun{\theta^{-1}}"]
\end{tikzcd}
\caption{\label{theta-sets}}
\end{figure}
\begin{thm}
This diagram is commutative, every arrow of this diagram is an isomorphism,
every cycle in this diagrams is an identity (therefore ``parallel''
arrows are mutually inverse).\end{thm}
\begin{proof}
That every arrow is an isomorphism is obvious.
Show that $\rsupfun{\theta}\lnot X=\lnot\rsupfun{\theta}X$ for every
set $X\in\subsets\mathfrak{A}$.
Really,
\begin{multline*}
p\in\rsupfun{\theta}\lnot X\Leftrightarrow\exists q\in\lnot X:p=\theta q\Leftrightarrow\exists q\in\lnot X:\theta^{-1}p=q\Leftrightarrow\theta^{-1}p\in\lnot X\Leftrightarrow\\
\nexists q\in X:q=\theta^{-1}p\Leftrightarrow\nexists q\in X:\theta q=p\Leftrightarrow p\notin\rsupfun{\theta}X\Leftrightarrow p\in\lnot\rsupfun{\theta}X.
\end{multline*}
Thus the theorem follows from lemma~\ref{four-loop-lem}.
\end{proof}
This diagram can be restricted to filters, ideals, free stars, and
mixers, see figure~\ref{theta-flt}:
\begin{figure}[ht]
\begin{tikzcd}[row sep=1cm, column sep=2cm]
\mathfrak{F}(\mathfrak{A})
\arrow[d, leftrightarrow, "\lnot"]
\arrow[r, shift left, rightarrow, "\rsupfun{\theta}"]
& \mathfrak{I}(\mathfrak{B}) \arrow[l, shift left, rightarrow, "\rsupfun{\theta^{-1}}"] \arrow[d, leftrightarrow, "\lnot"] \\
\mathfrak{M}(\mathfrak{A})
\arrow[r, shift left, rightarrow, "\rsupfun{\theta}"]
& \mathfrak{S}(\mathfrak{B}) \arrow[l, shift left, rightarrow, "\rsupfun{\theta^{-1}}"]
\end{tikzcd}
\caption{\label{theta-flt}}
\end{figure}
\begin{thm}
It is a restriction of the above diagram. Every arrow of this diagram
is an isomorphism, every cycle in these diagrams is an identity. (To
prove that, is an easy application of duality and the above lemma.)
\end{thm}
\subsection{Special diagrams}
Here are two important special cases of the above diagram:\begin{equation}\label{two-diags}\begin{tikzcd}
\mathfrak{F}(\mathfrak{A})
\arrow[d, leftrightarrow, "\lnot"]
\arrow[r, leftrightarrow, "\rsupfun{\dual}"]
& \mathfrak{I}(\dual\mathfrak{A}) \arrow[d, leftrightarrow, "\lnot"] \\
\mathfrak{M}(\mathfrak{A})
\arrow[r, leftrightarrow, "\rsupfun{\dual}"]
& \mathfrak{S}(\dual\mathfrak{A})
\end{tikzcd}
\quad\text{and}\quad
\begin{tikzcd}
\mathfrak{F}(\mathfrak{A})
\arrow[d, leftrightarrow, "\lnot"]
\arrow[r, leftrightarrow, "\rsupfun{\lnot}"]
& \mathfrak{I}(\mathfrak{A}) \arrow[d, leftrightarrow, "\lnot"] \\
\mathfrak{M}(\mathfrak{A})
\arrow[r, leftrightarrow, "\rsupfun{\lnot}"]
& \mathfrak{S}(\mathfrak{A})
\end{tikzcd}
\end{equation}(the second diagram is defined for a boolean lattice~$\mathfrak{A}$).
\subsection{Order of ideals, free stars, mixers}
Define order of ideals, free stars, mixers in such a way that the
above diagrams isomorphically preserve order of filters:
\begin{itemize}
\item $A\sqsubseteq B\Leftrightarrow A\supseteq B$ for filters and ideals;
\item $A\sqsubseteq B\Leftrightarrow A\subseteq B$ for free stars and mixers.
\end{itemize}
\subsection{Principal ideals, free stars, mixers}
\begin{defn}
\emph{Principal} ideal generated by an element~$a$ of poset~$\mathfrak{A}$
is $\downarrow a=\setcond{x\in\mathfrak{A}}{x\sqsubseteq a}$.
\end{defn}
\begin{defn}
An ideal is \emph{principal} iff it is generated by some poset element.
\end{defn}
\begin{defn}
The \emph{filtrator of ideals} on a given poset is the pair consisting
of the set of ideals and the set of principal ideals.
The above poset isomorphism maps principal filters into principal
ideals and thus is an isomorphism between the filtrator of filters
on a poset and the filtrator of ideals on the dual poset.\end{defn}
\begin{xca}
Define principal free stars and mixers, filtrators of free stars and
mixers and isomorphisms of these with the filtrator of filters (these
isomorphisms exist because the posets of free stars and mixers are
isomorphic to the poset of filters).\end{xca}
\begin{obvious}
The following filtrators are primary:
\begin{itemize}
\item filtrators of filters;
\item filtrators of ideals;
\item filtrators of free stars;
\item filtrators of mixers.
\end{itemize}
\end{obvious}
\subsubsection{Principal free stars}
\begin{prop}
An upper set $F\in\subsets\mathfrak{Z}$ is a principal filter iff
$\exists Z\in F\forall P\in F:Z\sqsubseteq P$.\end{prop}
\begin{proof}
~
\begin{description}
\item [{$\Rightarrow$}] Obvious.
\item [{$\Leftarrow$}] Let $Z\in F$ and $\forall P\in F:Z\sqsubseteq P$.
$F$ is nonempty because $Z\in F$. It remains to prove that $Z\sqsubseteq P\Leftrightarrow P\in F$.
The reverse implication follows from $\forall P\in F:Z\sqsubseteq P$.
The direct implication follows from that $F$ is an upper set.
\end{description}
\end{proof}
\begin{lem}
If $S\in\subsets\mathfrak{Z}$ is not the complement of empty set and for every $T\in\subsets\mathfrak{Z}$
\[
\forall Z\in\mathfrak{Z}:(\forall X\in T:Z\sqsupseteq X\Rightarrow Z\in S)\Leftrightarrow T\cap S\neq\emptyset,
\]
then $S$ is a free star.\end{lem}
\begin{proof}
Take $T=\{A,B\}$. Then $\forall Z\in\mathfrak{Z}:(Z\sqsupseteq A\wedge Z\sqsupseteq B\Rightarrow Z\in S)\Leftrightarrow A\in S\vee B\in S$.
So $S$ is a free star.\end{proof}
\begin{prop}
A set $S\in\subsets\mathfrak{Z}$ is a principal free star iff $S$
is not the complement of empty set and for every $T\in\subsets\mathfrak{Z}$
\[
\forall Z\in\mathfrak{Z}:(\forall X\in T:Z\sqsupseteq X\Rightarrow Z\in S)\Leftrightarrow T\cap S\neq\emptyset.
\]
\end{prop}
\begin{proof}
Let $S=\overline{\langle\dual\rangle^{\ast}F}$. We need to prove
that $F$ is a principal filter iff the above formula holds. Really, we have the following chain
of equivalencies:
$\forall Z\in\mathfrak{Z}:(\forall X\in T:Z\sqsupseteq X\Rightarrow Z\in S)\Leftrightarrow T\cap S\neq\emptyset$;
$\forall Z\in\mathfrak{Z}:(\forall X\in T:Z\sqsupseteq X\Rightarrow Z\notin\langle\dual\rangle^{\ast}F)\Leftrightarrow T\cap\overline{\langle\dual\rangle^{\ast}F}\neq\emptyset$;
$\forall Z\in\dual\mathfrak{Z}:(\forall X\in T:Z\sqsubseteq X\Rightarrow Z\notin F)\Leftrightarrow T\cap\overline{F}\neq\emptyset$;
$\forall Z\in\dual\mathfrak{Z}:(\forall X\in T:Z\sqsubseteq X\Rightarrow Z\notin F)\Leftrightarrow T\nsubseteq F$;
$T\subseteq F\Leftrightarrow\neg\forall Z\in\dual\mathfrak{Z}:(Z\in F\Rightarrow\neg\forall X\in T:Z\sqsubseteq X)$;
$T\subseteq F\Leftrightarrow\neg\forall Z\in\dual\mathfrak{Z}:(Z\notin F\vee\neg\forall X\in T:Z\sqsubseteq X)$;
$T\subseteq F\Leftrightarrow\exists Z\in\dual\mathfrak{Z}:(Z\in F\wedge\forall X\in T:Z\sqsubseteq X)$;
$T\subseteq F\Leftrightarrow\exists Z\in F\forall X\in T:Z\sqsubseteq X$;
$\exists Z\in F\forall X\in F:Z\sqsubseteq X$ that is $F$ is a principal
filter ($S$ is an upper set because by the lemma it is a free star;
thus $F$ is also an upper set).\end{proof}
\begin{prop}
$S\in\subsets\mathfrak{Z}$ where $\mathfrak{Z}$ is a poset is a
principal free star iff all the following:
\begin{enumerate}
\item \label{princ-fs-least}The least element (if it exists) is not in
$S$.
\item \label{princ-fs-form}$\forall Z\in\mathfrak{Z}:(\forall X\in T:Z\sqsupseteq X\Rightarrow Z\in S)\Rightarrow T\cap S\neq\emptyset$
for every $T\in\subsets\mathfrak{Z}$.
\item $S$ is an upper set.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{description}
\item [{$\Rightarrow$}] \ref{princ-fs-least} and \ref{princ-fs-form}
are obvious. $S$ is an upper set because $S$ is a free star.
\item [{$\Leftarrow$}] We need to prove that
\[
\forall Z\in\mathfrak{Z}:(\forall X\in T:Z\sqsupseteq X\Rightarrow Z\in S)\Leftarrow T\cap S\neq\emptyset.
\]
Let $X'\in T\cap S$. Then $\forall X\in T:Z\sqsupseteq X\Rightarrow Z\sqsupseteq X'\Rightarrow Z\in S$
because $S$ is an upper set.
\end{description}
\end{proof}
\begin{prop}
Let $\mathfrak{Z}$ be a complete lattice. $S\in\subsets\mathfrak{Z}$ is a principal
free star iff all the following:
\begin{enumerate}
\item The least element is not in $S$.
\item $\bigsqcup T\in S\Rightarrow T\cap S\neq\emptyset$ for every $T\in\subsets\mathfrak{Z}$.
\item $S$ is an upper set.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{description}
\item [{$\Rightarrow$}] We need to prove only $\bigsqcup T\in S\Rightarrow T\cap S\neq\emptyset$.
Let $\bigsqcup T\in S$. Because $S$ is an upper set, we have $\forall X\in T:Z\sqsupseteq X\Rightarrow Z\sqsupseteq\bigsqcup T\Rightarrow Z\in S$
for every $Z\in\mathfrak{Z}$;
from which we conclude $T\cap S\neq\emptyset$.
\item [{$\Leftarrow$}] We need to prove only $\forall Z\in\mathfrak{Z}:(\forall X\in T:Z\sqsupseteq X\Rightarrow Z\in S)\Rightarrow T\cap S\neq\emptyset$.
Really, if $\forall Z\in\mathfrak{Z}:(\forall X\in T:Z\sqsupseteq X\Rightarrow Z\in S)$
then $\bigsqcup T\in S$ and thus $\bigsqcup T\in S\Rightarrow T\cap S\neq\emptyset$.
\end{description}
\end{proof}
\begin{prop}
Let $\mathfrak{Z}$ be a complete lattice. $S\in\subsets\mathfrak{Z}$
is a principal free star iff the least element is not
in $S$ and for every $T\in\subsets\mathfrak{Z}$
\[
\bigsqcup T\in S\Leftrightarrow T\cap S\neq\emptyset.
\]
\end{prop}
\begin{proof}
~
\begin{description}
\item [{$\Rightarrow$}] We need to prove only $\bigsqcup T\in S\Leftarrow T\cap S\neq\emptyset$
what follows from that $S$ is an upper set.
\item [{$\Leftarrow$}] We need to prove only that $S$ is an upper set.
To prove this we can use the fact that $S$ is a free star.
\end{description}
\end{proof}
\begin{xca}
Write down similar formulas for mixers.
\end{xca}
\subsection{Starrish posets}
\begin{defn}
\index{starrish}\index{poset!starrish}I will call a poset \emph{starrish}
when the full star $\fullstar a$ is a free star for every element
$a$ of this poset.\end{defn}
\begin{prop}
Every distributive lattice is starrish.\end{prop}