-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathprepare_submission_file.py
53 lines (41 loc) · 1.73 KB
/
prepare_submission_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# file paths (edit the paths before running)
path_train = 'train.csv'
path_preds = 'preds.csv'
path_submission = 'submit.csv'
# loading libraries
import numpy as np
import pandas as pd
# preparing submission file
target_cols = ['ind_cco_fin_ult1','ind_cder_fin_ult1','ind_cno_fin_ult1','ind_ctju_fin_ult1',
'ind_ctma_fin_ult1','ind_ctop_fin_ult1','ind_ctpp_fin_ult1','ind_dela_fin_ult1',
'ind_ecue_fin_ult1','ind_fond_fin_ult1','ind_hip_fin_ult1','ind_plan_fin_ult1',
'ind_pres_fin_ult1','ind_reca_fin_ult1','ind_tjcr_fin_ult1','ind_valo_fin_ult1',
'ind_nomina_ult1','ind_nom_pens_ult1','ind_recibo_ult1']
last_instance_df = pd.read_csv(path_train, usecols=['ncodpers'] + target_cols)
last_instance_df = last_instance_df.drop_duplicates('ncodpers', keep='last')
cust_dict = {}
target_cols = np.array(target_cols)
for ind, row in last_instance_df.iterrows():
cust = row['ncodpers']
used_products = set(target_cols[np.array(row[1:])==1])
cust_dict[cust] = used_products
del last_instance_df
preds = pd.read_csv(path_preds)
test_id = np.array(preds['ncodpers'])
preds.drop(['ncodpers'], axis=1, inplace=True)
preds = np.argsort(preds, axis=1)
preds = np.fliplr(preds)
final_preds = []
for ind, pred in enumerate(preds):
cust = test_id[ind]
top_products = target_cols[pred]
used_products = cust_dict.get(cust,[])
new_top_products = []
for product in top_products:
if product not in used_products:
new_top_products.append(product)
if len(new_top_products) == 7:
break
final_preds.append(" ".join(new_top_products))
submission = pd.DataFrame({'ncodpers':test_id, 'added_products':final_preds})
submission.to_csv(path_submission, index=False)