-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathviz_matching.py
347 lines (297 loc) · 12.3 KB
/
viz_matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import argparse
import os
from datetime import datetime
import networkx as nx
import numpy as np
import torch
import utils
from dataset import onehot_encoding_node
from gnn import gnn
from scipy.spatial import distance_matrix
class InferenceGNN:
def __init__(self, args) -> None:
# if args.ngpu > 0:
# cmd = utils.set_cuda_visible_device(args.ngpu)
# os.environ["CUDA_VISIBLE_DEVICES"] = cmd[:-1]
self.model = gnn(args)
self.device = torch.device(
"cuda:0" if torch.cuda.is_available() else "cpu")
self.model = utils.initialize_model(
self.model, self.device, load_save_file=args.ckpt, gpu=(
args.ngpu > 0)
)
self.model.eval()
self.embedding_dim = args.embedding_dim
def prepare_single_input(self, m1, m2):
# Prepare subgraph
n1 = m1.number_of_nodes()
adj1 = nx.to_numpy_array(m1) + np.eye(n1)
H1 = onehot_encoding_node(m1, self.embedding_dim)
# Prepare source graph
n2 = m2.number_of_nodes()
adj2 = nx.to_numpy_array(m2) + np.eye(n2)
H2 = onehot_encoding_node(m2, self.embedding_dim)
# Aggregation node encoding
agg_adj1 = np.zeros((n1 + n2, n1 + n2))
agg_adj1[:n1, :n1] = adj1
agg_adj1[n1:, n1:] = adj2
agg_adj2 = np.copy(agg_adj1)
dm = distance_matrix(H1, H2)
dm_new = np.zeros_like(dm)
dm_new[dm == 0.0] = 1.0
agg_adj2[:n1, n1:] = np.copy(dm_new)
agg_adj2[n1:, :n1] = np.copy(np.transpose(dm_new))
H1 = np.concatenate([H1, np.zeros((n1, self.embedding_dim))], 1)
H2 = np.concatenate([np.zeros((n2, self.embedding_dim)), H2], 1)
H = np.concatenate([H1, H2], 0)
# node indice for aggregation
valid = np.zeros((n1 + n2,))
valid[:n1] = 1
sample = {
"H": H,
"A1": agg_adj1,
"A2": agg_adj2,
"V": valid,
}
return sample
def input_to_tensor(self, batch_input):
max_natoms = max([len(item["H"])
for item in batch_input if item is not None])
batch_size = len(batch_input)
H = np.zeros((batch_size, max_natoms, batch_input[0]["H"].shape[-1]))
A1 = np.zeros((batch_size, max_natoms, max_natoms))
A2 = np.zeros((batch_size, max_natoms, max_natoms))
V = np.zeros((batch_size, max_natoms))
for i in range(batch_size):
natom = len(batch_input[i]["H"])
H[i, :natom] = batch_input[i]["H"]
A1[i, :natom, :natom] = batch_input[i]["A1"]
A2[i, :natom, :natom] = batch_input[i]["A2"]
V[i, :natom] = batch_input[i]["V"]
H = torch.from_numpy(H).float()
A1 = torch.from_numpy(A1).float()
A2 = torch.from_numpy(A2).float()
V = torch.from_numpy(V).float()
H, A1, A2, V = (
H.to(self.device),
A1.to(self.device),
A2.to(self.device),
V.to(self.device),
)
return H, A1, A2, V
def prepare_multi_input(self, list_subgraphs, list_graphs):
list_inputs = []
for li, re in zip(list_subgraphs, list_graphs):
list_inputs.append(self.prepare_single_input(li, re))
return list_inputs
def predict_label(self, list_subgraphs, list_graphs):
list_inputs = self.prepare_multi_input(list_subgraphs, list_graphs)
input_tensors = self.input_to_tensor(list_inputs)
results = self.model(input_tensors)
return results
def predict_embedding(self, list_subgraphs, list_graphs):
list_inputs = self.prepare_multi_input(list_subgraphs, list_graphs)
input_tensors = self.input_to_tensor(list_inputs)
results = self.model.get_refined_adjs2(input_tensors)
return results
# from scipy.spatial import distance_matrix
# results = results.cpu().detach().numpy()
# return [distance_matrix(results[0], results[0])]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
"-c",
help="checkpoint for gnn",
type=str,
default="",
)
parser.add_argument("--dataset", help="dataset", type=str, default="tiny")
parser.add_argument(
"--num_workers", help="number of workers", type=int, default=os.cpu_count()
)
parser.add_argument(
"--confidence", help="isomorphism threshold", type=float, default=0.5
)
parser.add_argument(
"--mapping_threshold", help="mapping threshold", type=float, default=1e-5
)
parser.add_argument("--ngpu", help="number of gpu", type=int, default=1)
parser.add_argument("--batch_size", help="batch_size",
type=int, default=32)
parser.add_argument(
"--embedding_dim",
help="node embedding dim aka number of distinct node label",
type=int,
default=20,
)
parser.add_argument(
"--n_graph_layer", help="number of GNN layer", type=int, default=4
)
parser.add_argument(
"--d_graph_layer", help="dimension of GNN layer", type=int, default=140
)
parser.add_argument(
"--n_FC_layer", help="number of FC layer", type=int, default=4)
parser.add_argument(
"--d_FC_layer", help="dimension of FC layer", type=int, default=128
)
parser.add_argument("--dropout_rate", help="dropout_rate",
type=float, default=0.0)
parser.add_argument("--al_scale", help="attn_loss scale",
type=float, default=1.0)
parser.add_argument(
"--tatic",
help="tactic of defining number of hops",
type=str,
default="static",
choices=["static", "cont", "jump"],
)
parser.add_argument("--nhop", help="number of hops", type=int, default=1)
parser.add_argument("--branch", help="choosing branch",
type=str, default="both", choices=["both", "left", "right"])
parser.add_argument(
"--data_path", help="path to the data", type=str, default="data_processed"
)
parser.add_argument(
"--result_dir",
help="save directory of model parameter",
type=str,
default="results/",
)
parser.add_argument(
"--source", help="source graph idx", type=int, default=0
)
parser.add_argument(
"--query", help="query graph idx", type=int, default=0
)
parser.add_argument(
"--synthesis", action="store_true", help="synthesis data"
)
args = parser.parse_args()
print(args)
ngpu = args.ngpu
batch_size = args.batch_size
data_path = os.path.join(args.data_path, args.dataset)
result_dir = os.path.join(
args.result_dir, "%s_%s_%d" % (args.dataset, args.tatic, args.nhop)
)
if args.branch != "both":
result_dir += "_" + args.branch
ds_ckpt = args.ckpt.split("/")[1].split("_")
if len(ds_ckpt) > 4:
ds_ckpt = "_".join(ds_ckpt[:2])
else:
ds_ckpt = "_".join(ds_ckpt[:1])
if args.dataset != ds_ckpt:
result_dir += "_" + ds_ckpt
args.result_dir = result_dir
if not os.path.isdir(result_dir):
os.system("mkdir " + result_dir)
model = InferenceGNN(args)
# Load subgraph
subgraphs = utils.read_graphs(
f"{data_path}/{args.source}/iso_subgraphs.lg")
subgraph = subgraphs[args.query]
print("subgraph", subgraph != None)
# utils.plotGraph(subgraph, showLabel=False)
# Load graph
graphs = utils.read_graphs(
f"{data_path}/{args.source}/source.lg")
graph = graphs[0]
print("graph", graph != None)
# utils.plotGraph(graph, showLabel=True)
# Load mapping groundtruth
mapping_gts = utils.read_mapping(
f"{data_path}/{args.source}/iso_subgraphs_mapping.lg")
mapping_gt = mapping_gts[args.query]
print(mapping_gt)
results = model.predict_label([subgraph], [graph])
print("result", results[0] > args.confidence)
# if results[0] > args.confidence:
if True:
interactions = model.predict_embedding([subgraph], [graph])
# print("interactions", interactions[0])
interactions = interactions[0].cpu().detach().numpy()
n_subgraph_atom = subgraph.number_of_nodes()
x_coord, y_coord = np.where(interactions > args.mapping_threshold)
print("Embedding: (subgraph node, graph node)")
interaction_dict = {}
for x, y in zip(x_coord, y_coord):
if x < n_subgraph_atom and y >= n_subgraph_atom:
interaction_dict[(x, y-n_subgraph_atom)
] = interactions[x][y]
# print("(", x, y-n_ligand_atom, ")")
if x >= n_subgraph_atom and y < n_subgraph_atom and (y, x-n_subgraph_atom) not in interaction_dict:
interaction_dict[(y, x-n_subgraph_atom)
] = interactions[x][y]
# print("(", y, x-n_ligand_atom, ")")
list_mapping = list(interaction_dict.keys())
mapping_dict = {}
for node in subgraph.nodes:
cnode_mapping = list(map(lambda y: (y[1], interaction_dict[y]), filter(
lambda x: x[0] == node, list_mapping)))
if len(cnode_mapping) == 0:
mapping_dict[node] = []
continue
max_prob = max(cnode_mapping, key=lambda x: x[1])[1]
mapping_dict[node] = list(map(lambda x: x[0], filter(
lambda y: y[1] == max_prob, cnode_mapping)))
# print(mapping_dict)
node_labels = {n: "" for n in graph.nodes}
for sgn, list_gn in mapping_dict.items():
for gn in list_gn:
if len(node_labels[gn]) == 0:
node_labels[gn] = str(sgn)
else:
node_labels[gn] += ",%d" % sgn
node_colors = {n: "gray" for n in graph.nodes}
for node, nmaping in node_labels.items():
if not nmaping:
if mapping_gt[node] != -1:
node_colors[node] = "gold"
continue
list_nm = nmaping.split(",")
for nm in list_nm:
if mapping_gt[node] == int(nm):
node_colors[node] = "lime"
break
if mapping_gt[node] != int(nm) and node_colors[node] == "gray":
node_colors[node] = "pink"
for gn, sgn in mapping_gt.items():
if node_labels[gn] == "" and sgn != -1:
node_labels[gn] = str(sgn)
edge_colors = {n: "whitesmoke" for n in graph.edges}
for edge in graph.edges:
n1, n2 = edge
# map node from graph to node in subgraph
n1_sgs, n2_sgs = node_labels[n1], node_labels[n2]
if node_colors[n1] == "gray" or node_colors[n2] == "gray":
continue
# Check wheather a link between n1, n2 in subgraph
total_pair = len(n1_sgs.split(",")) * len(n2_sgs.split(","))
count_pair = 0
for n1_sg in n1_sgs.split(","):
n1_sg = int(n1_sg)
for n2_sg in n2_sgs.split(","):
n2_sg = int(n2_sg)
if (n1_sg, n2_sg) not in subgraph.edges and (n2_sg, n1_sg) not in subgraph.edges:
count_pair += 1
if count_pair != total_pair:
if node_colors[n1] == "lime" and node_colors[n2] == "lime":
edge_colors[edge] = "black"
elif node_colors[n1] == "gold" or node_colors[n2] == "gold":
edge_colors[edge] = "goldenrod"
elif node_colors[n1] == "pink" or node_colors[n2] == "pink":
edge_colors[edge] = "palevioletred"
else:
if node_colors[n1] == "pink" or node_colors[n2] == "pink":
edge_colors[edge] = "palevioletred"
utils.plotGraph(graph, nodeLabels=node_labels,
nodeColors=list(node_colors.values()),
edgeColors=list(edge_colors.values()),
fig_name=f"{args.result_dir}/{args.source}_{args.query}.pdf")
with open(f"{args.result_dir}/mapping_{args.source}_{args.query}.csv", "w", encoding="utf8") as f:
f.write("subgraph_node,graph_node,score\n")
for key, value in interaction_dict.items():
f.write("{:d},{:d},{:.3e}\n".format(key[0], key[1], value))