From ff1c4dfa7a6b0872aa84f732a08ff7929a949910 Mon Sep 17 00:00:00 2001 From: ElizaWszola Date: Fri, 20 Sep 2024 04:31:06 -0400 Subject: [PATCH 1/2] Split Marlin MoE kernels into multiple files --- CMakeLists.txt | 5 + csrc/moe/marlin_kernels/marlin_moe_kernel.h | 1425 ++++++++++++++++ .../marlin_kernels/marlin_moe_kernel_ku4b8.cu | 29 + .../marlin_kernels/marlin_moe_kernel_ku4b8.h | 20 + .../marlin_moe_kernel_ku8b128.cu | 29 + .../marlin_moe_kernel_ku8b128.h | 18 + csrc/moe/marlin_moe_ops.cu | 1456 +---------------- 7 files changed, 1552 insertions(+), 1430 deletions(-) create mode 100644 csrc/moe/marlin_kernels/marlin_moe_kernel.h create mode 100644 csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu create mode 100644 csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h create mode 100644 csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu create mode 100644 csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h diff --git a/CMakeLists.txt b/CMakeLists.txt index c8f19de94e59b..b6c5cab497bc0 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -310,6 +310,11 @@ set(VLLM_MOE_EXT_SRC if(VLLM_GPU_LANG STREQUAL "CUDA") list(APPEND VLLM_MOE_EXT_SRC + "csrc/moe/marlin_kernels/marlin_moe_kernel.h" + "csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h" + "csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu" + "csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h" + "csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu" "csrc/moe/marlin_moe_ops.cu") endif() diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel.h b/csrc/moe/marlin_kernels/marlin_moe_kernel.h new file mode 100644 index 0000000000000..473779492177e --- /dev/null +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel.h @@ -0,0 +1,1425 @@ +#pragma once + +#include + +#include +#include +#include +#include +#include + +#include + +#include "core/scalar_type.hpp" + +namespace marlin_moe { + +constexpr int ceildiv(int a, int b) { return (a + b - 1) / b; } + +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 + +// Instances of `Vec` are used to organize groups of >>registers<<, as needed +// for instance as inputs to tensor core operations. Consequently, all +// corresponding index accesses must be compile-time constants, which is why we +// extensively use `#pragma unroll` throughout the kernel code to guarantee +// this. +template +struct Vec { + T elems[n]; + __device__ T& operator[](int i) { return elems[i]; } +}; + +using I4 = Vec; + +// Matrix fragments for tensor core instructions; their precise layout is +// documented here: +// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-fragments-for-mma-m16n8k16-with-floating-point-type +using FragA = Vec; +using FragB = Vec; +using FragC = Vec; +using FragS = Vec; // quantization scales + +// Predicated asynchronous global->shared copy; used for inputs A where we apply +// predication to handle batchsizes that are not multiples of 16. +__device__ inline void cp_async4_pred(void* smem_ptr, const void* glob_ptr, + bool pred = true) { + const int BYTES = 16; + uint32_t smem = static_cast(__cvta_generic_to_shared(smem_ptr)); + asm volatile( + "{\n" + " .reg .pred p;\n" + " setp.ne.b32 p, %0, 0;\n" + " @p cp.async.cg.shared.global [%1], [%2], %3;\n" + "}\n" ::"r"((int)pred), + "r"(smem), "l"(glob_ptr), "n"(BYTES)); +} + +// Asynchronous global->shared copy +__device__ inline void cp_async4(void* smem_ptr, const void* glob_ptr) { + const int BYTES = 16; + uint32_t smem = static_cast(__cvta_generic_to_shared(smem_ptr)); + asm volatile( + "{\n" + " cp.async.cg.shared.global [%0], [%1], %2;\n" + "}\n" ::"r"(smem), + "l"(glob_ptr), "n"(BYTES)); +} + +// Async copy fence. +__device__ inline void cp_async_fence() { + asm volatile("cp.async.commit_group;\n" ::); +} + +// Wait until at most `n` async copy stages are still pending. +template +__device__ inline void cp_async_wait() { + asm volatile("cp.async.wait_group %0;\n" ::"n"(n)); +} + +// m16n8k16 tensor core mma instruction with fp16 inputs and fp32 +// output/accumulation. +__device__ inline void mma(const FragA& a_frag, const FragB& frag_b, + FragC& frag_c) { + const uint32_t* a = reinterpret_cast(&a_frag); + const uint32_t* b = reinterpret_cast(&frag_b); + float* c = reinterpret_cast(&frag_c); + asm volatile( + "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 " + "{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n" + : "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3]) + : "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3]), "r"(b[0]), "r"(b[1]), + "f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3])); +} + +// Instruction for loading a full 16x16 matrix fragment of operand A from shared +// memory, directly in tensor core layout. +__device__ inline void ldsm4(FragA& frag_a, const void* smem_ptr) { + uint32_t* a = reinterpret_cast(&frag_a); + uint32_t smem = static_cast(__cvta_generic_to_shared(smem_ptr)); + asm volatile("ldmatrix.sync.aligned.m8n8.x4.shared.b16 {%0,%1,%2,%3}, [%4];\n" + : "=r"(a[0]), "=r"(a[1]), "=r"(a[2]), "=r"(a[3]) + : "r"(smem)); +} + +// Lookup-table based 3-input logical operation; explicitly used for +// dequantization as the compiler does not seem to automatically recognize it in +// all cases. +template +__device__ inline int lop3(int a, int b, int c) { + int res; + asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" + : "=r"(res) + : "r"(a), "r"(b), "r"(c), "n"(lut)); + return res; +} + +// Constructs destination register by taking bytes from 2 sources (based on +// mask) +template +__device__ inline uint32_t prmt(uint32_t a) { + uint32_t res; + asm volatile("prmt.b32 %0, %1, %2, %3;\n" + : "=r"(res) + : "r"(a), "n"(start_byte), "n"(mask)); + return res; +} + +template +__device__ inline FragB dequant(int q); + +// Efficiently dequantize 4bit values packed in an int32 value into a full +// B-fragment of 4 fp16 values. We mostly follow the strategy in the link below, +// with some small changes: +// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L215-L287 +template <> +__device__ inline FragB dequant(int q) { + const int LO = 0x000f000f; + const int HI = 0x00f000f0; + const int EX = 0x64006400; + // Guarantee that the `(a & b) | c` operations are LOP3s. + int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX); + int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX); + // We want signed int4 outputs, hence we fuse the `-8` symmetric zero point + // directly into `SUB` and `ADD`. + const int SUB = 0x64086408; + const int MUL = 0x2c002c00; + const int ADD = 0xd480d480; + FragB frag_b; + frag_b[0] = __hsub2(*reinterpret_cast(&lo), + *reinterpret_cast(&SUB)); + frag_b[1] = __hfma2(*reinterpret_cast(&hi), + *reinterpret_cast(&MUL), + *reinterpret_cast(&ADD)); + return frag_b; +} + +// Fast Int8ToFp16: Efficiently dequantize 8bit int values to fp16 +// Reference: +// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L53-L85 +template <> +__device__ inline FragB dequant(int q) { + static constexpr uint32_t mask_for_elt_01 = 0x5250; + static constexpr uint32_t mask_for_elt_23 = 0x5351; + static constexpr uint32_t start_byte_for_fp16 = 0x64646464; + + uint32_t lo = prmt(q); + uint32_t hi = prmt(q); + + static constexpr uint32_t I8s_TO_F16s_MAGIC_NUM = 0x64806480; + + FragB frag_b; + frag_b[0] = __hsub2(*reinterpret_cast(&lo), + *reinterpret_cast(&I8s_TO_F16s_MAGIC_NUM)); + frag_b[1] = __hsub2(*reinterpret_cast(&hi), + *reinterpret_cast(&I8s_TO_F16s_MAGIC_NUM)); + return frag_b; +} + +// Multiply dequantized values by the corresponding quantization scale; used +// only for grouped quantization. +__device__ inline void scale(FragB& frag_b, FragS& frag_s, int i) { + half2 s = __half2half2(reinterpret_cast<__half*>(&frag_s)[i]); + frag_b[0] = __hmul2(frag_b[0], s); + frag_b[1] = __hmul2(frag_b[1], s); +} + +// Given 2 floats multiply by 2 scales (halves) +__device__ inline void scale_float(float* c, FragS& s) { + __half* s_ptr = reinterpret_cast<__half*>(&s); + c[0] = __fmul_rn(c[0], __half2float(s_ptr[0])); + c[1] = __fmul_rn(c[1], __half2float(s_ptr[1])); +} + +// Same as above, but for act_order (each K is multiplied individually) +__device__ inline void scale4(FragB& frag_b, FragS& frag_s_1, FragS& frag_s_2, + FragS& frag_s_3, FragS& frag_s_4, int i) { + __half2 s_val_1_2; + s_val_1_2.x = reinterpret_cast<__half*>(&frag_s_1)[i]; + s_val_1_2.y = reinterpret_cast<__half*>(&frag_s_2)[i]; + + __half2 s_val_3_4; + s_val_3_4.x = reinterpret_cast<__half*>(&frag_s_3)[i]; + s_val_3_4.y = reinterpret_cast<__half*>(&frag_s_4)[i]; + + frag_b[0] = __hmul2(frag_b[0], s_val_1_2); + frag_b[1] = __hmul2(frag_b[1], s_val_3_4); +} + +// Wait until barrier reaches `count`, then lock for current threadblock. +__device__ inline void barrier_acquire(int* lock, int count) { + if (threadIdx.x == 0) { + int state = -1; + do + // Guarantee that subsequent writes by this threadblock will be visible + // globally. + asm volatile("ld.global.acquire.gpu.b32 %0, [%1];\n" + : "=r"(state) + : "l"(lock)); + while (state != count); + } + __syncthreads(); +} + +// Release barrier and increment visitation count. +__device__ inline void barrier_release(int* lock, bool reset = false) { + __syncthreads(); + if (threadIdx.x == 0) { + if (reset) { + lock[0] = 0; + return; + } + int val = 1; + // Make sure that all writes since acquiring this barrier are visible + // globally, while releasing the barrier. + asm volatile("fence.acq_rel.gpu;\n"); + asm volatile("red.relaxed.gpu.global.add.s32 [%0], %1;\n" + : + : "l"(lock), "r"(val)); + } +} + +template shared + // fetch pipeline + const bool has_act_order, // whether act_order is enabled + const int group_blocks = -1 // number of consecutive 16x16 blocks + // with a separate quantization scale + > +__device__ inline void MarlinMoESingle( + const int4* __restrict__ A, // fp16 input matrix of shape mxk + const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn + int4* __restrict__ C, // fp16 output buffer of shape mxn + const int* __restrict__ sorted_ids, // int32 sorted ids of experts + const float* __restrict__ topk_weights, // float topk weights + const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape + // (k/groupsize)xn + const int* __restrict__ g_idx, // int32 group indices of shape k + const int* __restrict__ expert_offsets, + int num_groups, // number of scale groups per output channel + int expert_idx, // idx of current expert + int num_experts, // number of experts + int topk, // topk parameter of moe + int prob_m, // batch dimension m + int prob_n, // output dimension n + int prob_k, // reduction dimension k + int tot_m, // total number of rows in A and C + int* locks, // extra global storage for barrier synchronization + bool replicate_input, // do we use the same input for each expert? + bool apply_weights, // apply weights to output + int current_m_block // current m block to start kernel computation from +) { + static constexpr auto w_type = vllm::ScalarType::from_id(w_type_id); + constexpr int pack_factor = 32 / w_type.size_bits(); + + // For larger GEMMs we run multiple batchsize 64 versions in parallel for a + // better partitioning with less reductions + int parallel = 1; + if (prob_m > 16 * thread_m_blocks) { + parallel = prob_m / (16 * thread_m_blocks); + prob_m = 16 * thread_m_blocks; + } + + int k_tiles = prob_k / 16 / thread_k_blocks; + int n_tiles = prob_n / 16 / thread_n_blocks; + int iters = ceildiv(k_tiles * n_tiles * parallel, gridDim.x); + + if constexpr (!has_act_order && group_blocks != -1) { + if (group_blocks >= thread_k_blocks) { + // Ensure that the number of tiles in each stripe is a multiple of the + // groupsize; this avoids an annoying special case where a stripe starts + // in the middle of group. + iters = (group_blocks / thread_k_blocks) * + ceildiv(iters, (group_blocks / thread_k_blocks)); + } + } + + int slice_row = (iters * blockIdx.x) % k_tiles; + int slice_col_par = (iters * blockIdx.x) / k_tiles; + int slice_col = slice_col_par; + int slice_iters; // number of threadblock tiles in the current slice + int slice_count = + 0; // total number of active threadblocks in the current slice + int slice_idx; // index of threadblock in current slice; numbered bottom to + // top + + // We can easily implement parallel problem execution by just remapping + // indices and advancing global pointers + if (slice_col_par >= n_tiles) { + locks += (slice_col_par / n_tiles) * n_tiles; + slice_col = slice_col_par % n_tiles; + sorted_ids += (slice_col_par / n_tiles) * 16 * thread_m_blocks; + } + + // Compute all information about the current slice which is required for + // synchronization. + auto init_slice = [&]() { + slice_iters = + iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row); + if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0; + if (slice_iters == 0) return; + if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row; + slice_count = 1; + slice_idx = 0; + int col_first = iters * ceildiv(k_tiles * slice_col_par, iters); + if (col_first <= k_tiles * (slice_col_par + 1)) { + int col_off = col_first - k_tiles * slice_col_par; + slice_count = ceildiv(k_tiles - col_off, iters); + if (col_off > 0) slice_count++; + int delta_first = iters * blockIdx.x - col_first; + if (delta_first < 0 || (col_off == 0 && delta_first == 0)) + slice_idx = slice_count - 1; + else { + slice_idx = slice_count - 1 - delta_first / iters; + if (col_off > 0) slice_idx--; + } + } + if (slice_col == n_tiles) { + sorted_ids += 16 * thread_m_blocks; + locks += n_tiles; + slice_col = 0; + } + }; + init_slice(); + + // A sizes/strides + + // stride of the A matrix in global memory + int a_gl_stride = prob_k / 8; + // stride of an A matrix tile in shared memory + constexpr int a_sh_stride = 16 * thread_k_blocks / 8; + // delta between subsequent A tiles in global memory + constexpr int a_gl_rd_delta_o = 16 * thread_k_blocks / 8; + // between subsequent accesses within a tile + int a_gl_rd_delta_i = a_gl_stride * (threads / a_gl_rd_delta_o); + // between shared memory writes + constexpr int a_sh_wr_delta = a_sh_stride * (threads / a_gl_rd_delta_o); + // between shared memory tile reads + constexpr int a_sh_rd_delta_o = 2 * ((threads / 32) / (thread_n_blocks / 4)); + // within a shared memory tile + constexpr int a_sh_rd_delta_i = a_sh_stride * 16; + // overall size of a tile + constexpr int a_sh_stage = a_sh_stride * (16 * thread_m_blocks); + // number of shared write iterations for a tile + constexpr int a_sh_wr_iters = ceildiv(a_sh_stage, a_sh_wr_delta); + + // B sizes/strides + int b_gl_stride = 16 * prob_n / (pack_factor * 4); + constexpr int b_sh_stride = ((thread_n_blocks * 16) * 16 / pack_factor) / 4; + constexpr int b_thread_vecs = w_type.size_bits() == 4 ? 1 : 2; + constexpr int b_sh_stride_threads = b_sh_stride / b_thread_vecs; + + int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks; + int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride_threads); + constexpr int b_sh_wr_delta = threads * b_thread_vecs; + constexpr int b_sh_rd_delta = threads * b_thread_vecs; + constexpr int b_sh_stage = b_sh_stride * thread_k_blocks; + constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta; + + // Scale sizes/strides without act_order + int s_gl_stride = prob_n / 8; + constexpr int s_sh_stride = 16 * thread_n_blocks / 8; + constexpr int s_tb_groups = + !has_act_order && group_blocks != -1 && group_blocks < thread_k_blocks + ? thread_k_blocks / group_blocks + : 1; + constexpr int s_sh_stage = s_tb_groups * s_sh_stride; + int s_gl_rd_delta = s_gl_stride; + // Scale size/strides with act_order + constexpr int tb_k = 16 * thread_k_blocks; + constexpr int g_idx_stage = has_act_order ? (tb_k * sizeof(int)) / 16 : 0; + // constexpr int act_s_row_stride = 1; + // int act_s_col_stride = act_s_row_stride * num_groups; + int act_s_col_stride = 1; + int act_s_col_warp_stride = act_s_col_stride * 8; + int tb_n_warps = thread_n_blocks / 4; + int act_s_col_tb_stride = act_s_col_warp_stride * tb_n_warps; + + constexpr int sorted_sh_stride = threads; + constexpr int sorted_gl_stride = threads; + + // Global A read index of current thread. + int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + + (threadIdx.x % a_gl_rd_delta_o); + a_gl_rd += a_gl_rd_delta_o * slice_row; + // Shared write index of current thread. + int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) + + (threadIdx.x % a_gl_rd_delta_o); + // Shared read index. + int a_sh_rd = + a_sh_stride * ((threadIdx.x % 32) % 16) + (threadIdx.x % 32) / 16; + a_sh_rd += 2 * ((threadIdx.x / 32) / (thread_n_blocks / 4)); + + int b_gl_rd = b_gl_stride * (threadIdx.x / b_sh_stride_threads) + + (threadIdx.x % b_sh_stride_threads) * b_thread_vecs; + b_gl_rd += b_sh_stride * slice_col; + b_gl_rd += b_gl_rd_delta_o * slice_row; + int b_sh_wr = threadIdx.x * b_thread_vecs; + int b_sh_rd = threadIdx.x * b_thread_vecs; + + // For act_order + constexpr int k_iter_size = tb_k / b_sh_wr_iters; + int slice_k_start = tb_k * slice_row; + int slice_k_finish = slice_k_start + tb_k * slice_iters; + int slice_k_start_shared_fetch = slice_k_start; + int slice_n_offset = act_s_col_tb_stride * slice_col; + + // No act_order + int s_gl_rd; + if constexpr (!has_act_order) { + if constexpr (group_blocks == -1) { + s_gl_rd = s_sh_stride * slice_col + threadIdx.x; + } else { + s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) + + s_sh_stride * slice_col + threadIdx.x; + } + } + int s_sh_wr = threadIdx.x; + bool s_sh_wr_pred = threadIdx.x < s_sh_stride; + + // We use a different scale layout for grouped and column-wise quantization as + // we scale a `half2` tile in column-major layout in the former and in + // row-major in the latter case. + int s_sh_rd; + if constexpr (group_blocks != -1) + s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + + (threadIdx.x % 32) / 4; + else + s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + + (threadIdx.x % 32) % 4; + + int sh_first_group_id = -1; + int sh_num_groups = -1; + constexpr int sh_max_num_groups = 32; + + int shs_size; + if constexpr (has_act_order) + shs_size = sh_max_num_groups * s_sh_stride + threads; + else + shs_size = group_blocks > 0 ? stages * s_sh_stage : threads; + + extern __shared__ int4 sh[]; + // Shared memory storage for global fetch pipelines. + int4* sh_a = sh; + int4* sh_b = sh_a + (stages * a_sh_stage); + int4* sh_g_idx = sh_b + (stages * b_sh_stage); + int4* sh_s = sh_g_idx + (stages * g_idx_stage); + int* sh_sorted = (int*)(sh_s + shs_size); + + // Precompute which thread should not read memory in which iterations; this is + // needed if there are more threads than required for a certain tilesize or + // when the batchsize is not a multiple of 16. + bool a_sh_wr_pred[a_sh_wr_iters]; + #pragma unroll + for (int i = 0; i < a_sh_wr_iters; i++) { + int a_idx = a_sh_wr_delta * i + a_sh_wr; + int row = a_idx / a_gl_rd_delta_o; + if (row >= prob_m) { + a_sh_wr_pred[i] = false; + } else { + a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m; + } + } + + // To ensure that writing and reading A tiles to/from shared memory, the + // latter in fragment format, is fully bank conflict free, we need to use a + // rather fancy XOR-based layout. The key here is that neither reads nor + // writes of the 16-byte `int4` blocks of 8 consecutive threads involve the + // same shared memory banks. Further, it seems (based on NSight-Compute) that + // each warp must also write a consecutive memory segment? + auto transform_a = [&](int i) { + int row = i / a_gl_rd_delta_o; + return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row; + }; + // Since the computation of this remapping is non-trivial and, due to our main + // loop unrolls, all shared memory accesses are static, we simply precompute + // both transformed reads and writes. + int a_sh_wr_trans[a_sh_wr_iters]; + #pragma unroll + for (int i = 0; i < a_sh_wr_iters; i++) + a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr); + int a_sh_rd_trans[b_sh_wr_iters][thread_m_blocks]; + #pragma unroll + for (int i = 0; i < b_sh_wr_iters; i++) { + #pragma unroll + for (int j = 0; j < thread_m_blocks; j++) + a_sh_rd_trans[i][j] = + transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd); + } + + // Since B-accesses have non-constant stride they have to be computed at + // runtime; we break dependencies between subsequent accesses with a tile by + // maintining multiple pointers (we have enough registers), a tiny + // optimization. + const int4* B_ptr[b_sh_wr_iters]; + #pragma unroll + for (int i = 0; i < b_sh_wr_iters; i++) + B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd; + + // Register storage for double buffer of shared memory reads. + FragA frag_a[2][thread_m_blocks]; + I4 frag_b_quant[2][b_thread_vecs]; + FragC frag_c[thread_m_blocks][4][2]; + FragS frag_s[2][4]; // No act-order + FragS act_frag_s[2][4][4]; // For act-order + + // Zero accumulators. + auto zero_accums = [&]() { + #pragma unroll + for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++) + reinterpret_cast(frag_c)[i] = 0; + }; + + auto fetch_scales_to_shared = [&](bool is_async, int first_group_id, + int last_group_id) { + sh_first_group_id = first_group_id; + sh_num_groups = last_group_id - first_group_id + 1; + + if (sh_num_groups < sh_max_num_groups) { + sh_num_groups = sh_max_num_groups; + } + + if (sh_first_group_id + sh_num_groups > num_groups) { + sh_num_groups = num_groups - sh_first_group_id; + } + + int row_offset = first_group_id * s_gl_stride; + + if (is_async) { + for (int i = 0; i < sh_num_groups; i++) { + if (threadIdx.x < s_sh_stride) { + cp_async4_pred(&sh_s[(i * s_sh_stride) + threadIdx.x], + &scales_ptr[row_offset + (i * s_gl_stride) + + slice_n_offset + threadIdx.x]); + } + } + } else { + for (int i = 0; i < sh_num_groups; i++) { + if (threadIdx.x < s_sh_stride) { + sh_s[(i * s_sh_stride) + threadIdx.x] = + scales_ptr[row_offset + (i * s_gl_stride) + slice_n_offset + + threadIdx.x]; + } + } + } + }; + // Asynchronously fetch the next A, B and s tile from global to the next + // shared memory pipeline location. + auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) { + if (pred) { + int4* sh_a_stage = sh_a + a_sh_stage * pipe; + #pragma unroll + for (int i = 0; i < a_sh_wr_iters; i++) { + int a_idx = a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off; + int row = a_idx / a_gl_stride; + int sorted_row = + replicate_input ? sorted_ids[row] / topk : sorted_ids[row]; + int new_idx = sorted_row * a_gl_stride + a_idx % a_gl_stride; + if (sorted_row < tot_m * (replicate_input ? 1 : topk) && + new_idx < a_gl_stride * tot_m * (replicate_input ? 1 : topk)) { + cp_async4_pred(&sh_a_stage[a_sh_wr_trans[i]], &A[new_idx], + a_sh_wr_pred[i]); + } + } + int4* sh_b_stage = sh_b + b_sh_stage * pipe; + #pragma unroll + for (int i = 0; i < b_sh_wr_iters; i++) { + #pragma unroll + for (int j = 0; j < b_thread_vecs; j++) { + cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr + j], B_ptr[i] + j); + } + B_ptr[i] += b_gl_rd_delta_o; + } + + if constexpr (has_act_order) { + // Fetch g_idx thread-block portion + int full_pipe = a_off; + int cur_k = slice_k_start_shared_fetch + tb_k * full_pipe; + if (cur_k < prob_k && cur_k < slice_k_finish) { + int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; + + int4 const* cur_g_idx_stage_ptr = + reinterpret_cast(&g_idx[cur_k]); + + if (threadIdx.x < g_idx_stage) { + cp_async4_pred(&sh_g_idx_stage[threadIdx.x], + &cur_g_idx_stage_ptr[threadIdx.x]); + } + } + } else { + if constexpr (group_blocks != -1) { + int4* sh_s_stage = sh_s + s_sh_stage * pipe; + + if constexpr (group_blocks >= thread_k_blocks) { + // Only fetch scales if this tile starts a new group + if (pipe % (group_blocks / thread_k_blocks) == 0) { + if (s_sh_wr_pred) { + cp_async4(&sh_s_stage[s_sh_wr], &scales_ptr[s_gl_rd]); + } + s_gl_rd += s_gl_rd_delta; + } + } else { + for (int i = 0; i < s_tb_groups; i++) { + if (s_sh_wr_pred) { + cp_async4(&sh_s_stage[i * s_sh_stride + s_sh_wr], + &scales_ptr[s_gl_rd]); + } + s_gl_rd += s_gl_rd_delta; + } + } + } + } + } + // Insert a fence even when we are winding down the pipeline to ensure that + // waiting is also correct at this point. + cp_async_fence(); + }; + + // TODO we are currently hitting illegal memory accesses when fetching + // sorted_ids to shared data: fix this + auto fetch_sorted_ids_to_shared = [&]() { + const int mpt = ceildiv(prob_m, threads); + for (int i = 0; i < mpt; i++) { + if ((i * sorted_gl_stride) + threadIdx.x < prob_m) { + sh_sorted[(i * sorted_sh_stride) + threadIdx.x] = + sorted_ids[(i * sorted_gl_stride) + threadIdx.x]; + } + } + }; + + // Wait until the next thread tile has been loaded to shared memory. + auto wait_for_stage = [&]() { + // We only have `stages - 2` active fetches since we are double buffering + // and can only issue the next fetch when it is guaranteed that the previous + // shared memory load is fully complete (as it may otherwise be + // overwritten). + cp_async_wait(); + __syncthreads(); + }; + + // Load the next sub-tile from the current location in the shared memory pipe + // into the current register buffer. + auto fetch_to_registers = [&](int k, int pipe) { + int4* sh_a_stage = sh_a + a_sh_stage * pipe; + #pragma unroll + for (int i = 0; i < thread_m_blocks; i++) + ldsm4(frag_a[k % 2][i], &sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]); + int4* sh_b_stage = sh_b + b_sh_stage * pipe; + + #pragma unroll + for (int i = 0; i < b_thread_vecs; i++) { + frag_b_quant[k % 2][i] = *reinterpret_cast( + &sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd + i]); + } + }; + + bool is_same_group[stages]; + int same_group_id[stages]; + + auto init_same_group = [&](int pipe) { + if constexpr (!has_act_order) { + is_same_group[pipe] = false; + same_group_id[pipe] = 0; + return; + } + + int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; + int* sh_g_idx_int_ptr = reinterpret_cast(sh_g_idx_stage); + + int group_id_1 = sh_g_idx_int_ptr[0]; + int group_id_2 = sh_g_idx_int_ptr[tb_k - 1]; + + is_same_group[pipe] = group_id_1 == group_id_2; + same_group_id[pipe] = group_id_1; + }; + + auto fetch_scales_to_registers = [&](int k, int full_pipe) { + int pipe = full_pipe % stages; + + if constexpr (!has_act_order) { + // No act-order case + if constexpr (group_blocks != -1) { + if constexpr (group_blocks >= thread_k_blocks) { + int4* sh_s_stage = + sh_s + s_sh_stage * ((group_blocks / thread_k_blocks) * + (pipe / (group_blocks / thread_k_blocks))); + reinterpret_cast(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd]; + } else { + int warp_id = threadIdx.x / 32; + int n_warps = thread_n_blocks / 4; + + int warp_row = warp_id / n_warps; + + int cur_k = warp_row * 16; + cur_k += k_iter_size * (k % b_sh_wr_iters); + + int k_blocks = cur_k / 16; + int cur_group_id = k_blocks / group_blocks; + + int4* sh_s_stage = sh_s + s_sh_stage * pipe; + + reinterpret_cast(&frag_s[k % 2])[0] = + sh_s_stage[s_sh_rd + cur_group_id * s_sh_stride]; + } + } + + return; + } + + // Act-order case + + // Determine K of the "current" thread-block + int cur_k = slice_k_start + tb_k * full_pipe; + if (cur_k >= prob_k || cur_k >= slice_k_finish) { + return; + } + + // Reset (to current thread-block) since we read g_idx portion from the + // shared memory + cur_k = 0; + + // Progress to current iteration + cur_k += k_iter_size * (k % b_sh_wr_iters); + + // Determine "position" inside the thread-block (based on warp and + // thread-id) + int warp_id = threadIdx.x / 32; + int n_warps = + thread_n_blocks / 4; // Each warp processes 4 16-size tiles over N + + int warp_row = warp_id / n_warps; + int warp_col = warp_id % n_warps; + + cur_k += warp_row * 16; + + int th_id = threadIdx.x % 32; + cur_k += (th_id % 4) * 2; // Due to tensor-core layout for fp16 B matrix + + int s_col_shift = + /*slice_n_offset +*/ (act_s_col_warp_stride * warp_col) + + (th_id / 4) * act_s_col_stride; + + if (is_same_group[pipe]) { + if (k % 2 == 0) { + *(reinterpret_cast(&(act_frag_s[k % 2][0][0]))) = + sh_s[(same_group_id[pipe] - sh_first_group_id) * s_sh_stride + + s_col_shift]; + } else { + *(reinterpret_cast(&(act_frag_s[k % 2][0][0]))) = + *(reinterpret_cast(&(act_frag_s[(k - 1) % 2][0][0]))); + } + + for (int i = 1; i < 4; i++) { + *(reinterpret_cast(&(act_frag_s[k % 2][i][0]))) = + *(reinterpret_cast(&(act_frag_s[k % 2][0][0]))); + } + return; + } + + int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; + int* sh_g_idx_int_ptr = reinterpret_cast(sh_g_idx_stage); + + constexpr int k_frag_offsets[4] = {0, 1, 8, + 9}; // Tensor core offsets per thread + + #pragma unroll + for (int i = 0; i < 4; i++) { + int actual_k = cur_k + k_frag_offsets[i]; + + int group_id = sh_g_idx_int_ptr[actual_k]; + int rel_group_id = group_id - sh_first_group_id; + + *(reinterpret_cast(&(act_frag_s[k % 2][i][0]))) = + sh_s[rel_group_id * s_sh_stride + s_col_shift]; + } + }; + + // Execute the actual tensor core matmul of a sub-tile. + auto matmul = [&](int k) { + // We have the m dimension as the inner loop in order to encourage overlapping + // dequantization and matmul operations. + #pragma unroll + for (int j = 0; j < 4; j++) { + int b_quant_0, b_quant_1; + if constexpr (w_type.size_bits() == 4) { + b_quant_0 = frag_b_quant[k % 2][0][j]; + b_quant_1 = b_quant_0 >> 8; + } else { + static_assert(w_type.size_bits() == 8); + int* frag_b_quant_ptr = reinterpret_cast(frag_b_quant[k % 2]); + b_quant_0 = frag_b_quant_ptr[j * 2 + 0]; + b_quant_1 = frag_b_quant_ptr[j * 2 + 1]; + } + + FragB frag_b0 = dequant(b_quant_0); + FragB frag_b1 = dequant(b_quant_1); + + // Apply scale to frag_b0 + if constexpr (has_act_order) { + scale4(frag_b0, act_frag_s[k % 2][0][j], act_frag_s[k % 2][1][j], + act_frag_s[k % 2][2][j], act_frag_s[k % 2][3][j], 0); + } else { + if constexpr (group_blocks != -1) { + scale(frag_b0, frag_s[k % 2][j], 0); + } + } + + // Apply scale to frag_b1 + if constexpr (has_act_order) { + scale4(frag_b1, act_frag_s[k % 2][0][j], act_frag_s[k % 2][1][j], + act_frag_s[k % 2][2][j], act_frag_s[k % 2][3][j], 1); + + } else { + if constexpr (group_blocks != -1) { + scale(frag_b1, frag_s[k % 2][j], 1); + } + } + + #pragma unroll + for (int i = 0; i < thread_m_blocks; i++) { + mma(frag_a[k % 2][i], frag_b0, frag_c[i][j][0]); + mma(frag_a[k % 2][i], frag_b1, frag_c[i][j][1]); + } + } + }; + + // Since we slice across the k dimension of a tile in order to increase the + // number of warps while keeping the n dimension of a tile reasonable, we have + // multiple warps that accumulate their partial sums of the same output + // location; which we have to reduce over in the end. We do in shared memory. + auto thread_block_reduce = [&]() { + constexpr int red_off = threads / b_sh_stride_threads / 2; + if (red_off >= 1) { + int red_idx = threadIdx.x / b_sh_stride_threads; + constexpr int red_sh_stride = b_sh_stride_threads * 4 * 2; + constexpr int red_sh_delta = b_sh_stride_threads; + int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride_threads) + + (threadIdx.x % b_sh_stride_threads); + + // Parallel logarithmic shared memory reduction. We make sure to avoid any + // unnecessary read or write iterations, e.g., for two warps we write only + // once by warp 1 and read only once by warp 0. + + #pragma unroll + for (int m_block = 0; m_block < thread_m_blocks; m_block++) { + #pragma unroll + for (int i = red_off; i > 0; i /= 2) { + if (i <= red_idx && red_idx < 2 * i) { + #pragma unroll + for (int j = 0; j < 4 * 2; j++) { + int red_sh_wr = + red_sh_delta * j + (red_sh_rd - red_sh_stride * i); + if (i < red_off) { + float* c_rd = + reinterpret_cast(&sh[red_sh_delta * j + red_sh_rd]); + float* c_wr = reinterpret_cast(&sh[red_sh_wr]); + #pragma unroll + for (int k = 0; k < 4; k++) + reinterpret_cast(frag_c)[4 * 2 * m_block + j][k] += + c_rd[k] + c_wr[k]; + } + sh[red_sh_wr] = + reinterpret_cast(&frag_c)[4 * 2 * m_block + j]; + } + } + __syncthreads(); + } + if (red_idx == 0) { + #pragma unroll + for (int i = 0; i < 4 * 2; i++) { + float* c_rd = + reinterpret_cast(&sh[red_sh_delta * i + red_sh_rd]); + #pragma unroll + for (int j = 0; j < 4; j++) + reinterpret_cast(frag_c)[4 * 2 * m_block + i][j] += + c_rd[j]; + } + } + __syncthreads(); + } + } + }; + + // Since multiple threadblocks may process parts of the same column slice, we + // finally have to globally reduce over the results. As the striped + // partitioning minimizes the number of such reductions and our outputs are + // usually rather small, we perform this reduction serially in L2 cache. + auto global_reduce = [&](bool first = false, bool last = false) { + // We are very careful here to reduce directly in the output buffer to + // maximize L2 cache utilization in this step. To do this, we write out + // results in FP16 (but still reduce with FP32 compute). + constexpr int active_threads = 32 * thread_n_blocks / 4; + if (threadIdx.x < active_threads) { + int c_gl_stride = prob_n / 8; + int c_gl_wr_delta_o = 8 * c_gl_stride; + int c_gl_wr_delta_i = 4 * (active_threads / 32); + int c_gl_wr = c_gl_stride * ((threadIdx.x % 32) / 4) + + 4 * (threadIdx.x / 32) + threadIdx.x % 4; + c_gl_wr += (2 * thread_n_blocks) * slice_col; + constexpr int c_sh_wr_delta = active_threads; + int c_sh_wr = threadIdx.x; + + int row = (threadIdx.x % 32) / 4; + + if (!first) { + // Interestingly, doing direct global accesses here really seems to mess up + // the compiler and lead to slowdowns, hence we also use async-copies even + // though these fetches are not actually asynchronous. + #pragma unroll + for (int i = 0; i < thread_m_blocks * 4; i++) { + int c_idx = + c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2); + int sorted_row = sorted_ids[c_idx / c_gl_stride]; + int new_idx = sorted_row * c_gl_stride + c_idx % c_gl_stride; + cp_async4_pred(&sh[c_sh_wr + c_sh_wr_delta * i], &C[new_idx], + sorted_row < tot_m * topk && + (8 * (i / 2) + row < prob_m && + (i < (thread_m_blocks - 1) * 4 || + sorted_ids[8 * (i / 2) + row] < tot_m * topk))); + } + cp_async_fence(); + cp_async_wait<0>(); + } + + #pragma unroll + for (int i = 0; i < thread_m_blocks * 4; i++) { + if (8 * (i / 2) + row < prob_m && + (i < (thread_m_blocks - 1) * 4 || + sorted_ids[8 * (i / 2) + row] < tot_m * topk)) { + if (!first) { + int4 c_red = sh[c_sh_wr + i * c_sh_wr_delta]; + #pragma unroll + for (int j = 0; j < 2 * 4; j++) { + reinterpret_cast( + &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)] += + __half2float(reinterpret_cast<__half*>(&c_red)[j]); + } + } + if (!last) { + int4 c; + #pragma unroll + for (int j = 0; j < 2 * 4; j++) { + reinterpret_cast<__half*>(&c)[j] = + __float2half(reinterpret_cast( + &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)]); + } + int c_idx = + c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2); + int row = sorted_ids[c_idx / c_gl_stride]; + if (row < tot_m * topk) { + int new_idx = row * c_gl_stride + c_idx % c_gl_stride; + C[new_idx] = c; + } + } + } + } + } + }; + + // Write out the reduce final result in the correct layout. We only actually + // reshuffle matrix fragments in this step, the reduction above is performed + // in fragment layout. + auto write_result = [&]() { + int c_gl_stride = prob_n / 8; + constexpr int c_sh_stride = 2 * thread_n_blocks + 1; + int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks)); + constexpr int c_sh_rd_delta = + c_sh_stride * (threads / (2 * thread_n_blocks)); + + int c_gl_wr = c_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) + + (threadIdx.x % (2 * thread_n_blocks)); + c_gl_wr += (2 * thread_n_blocks) * slice_col; + int c_sh_wr = + (4 * c_sh_stride) * ((threadIdx.x % 32) / 4) + (threadIdx.x % 32) % 4; + c_sh_wr += 32 * (threadIdx.x / 32); + int c_sh_rd = c_sh_stride * (threadIdx.x / (2 * thread_n_blocks)) + + (threadIdx.x % (2 * thread_n_blocks)); + + int c_gl_wr_end = c_gl_stride * prob_m; + + // We first reorder in shared memory to guarantee the most efficient final + // global write patterns + auto write = [&](int idx, float c0, float c1, FragS& s) { + half2 res = __halves2half2(__float2half(c0), __float2half(c1)); + + // For per-column quantization we finally apply the scale here (only for + // 4-bit) + if constexpr (!has_act_order && group_blocks == -1 && + w_type.size_bits() == 4) { + res = __hmul2(res, s[0]); + } + + ((half2*)sh)[idx] = res; + }; + if (threadIdx.x / 32 < thread_n_blocks / 4) { + #pragma unroll + for (int i = 0; i < thread_m_blocks; i++) { + #pragma unroll + for (int j = 0; j < 4; j++) { + int wr = c_sh_wr + 8 * j; + write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0], + frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]); + write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2], + frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]); + write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0], + frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]); + write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2], + frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]); + } + c_sh_wr += 16 * (4 * c_sh_stride); + } + } + __syncthreads(); + + #pragma unroll + for (int i = 0; + i < ceildiv(16 * thread_m_blocks, threads / (2 * thread_n_blocks)); + i++) { + if (c_gl_wr < c_gl_wr_end) { + int row = sorted_ids[c_gl_wr / c_gl_stride]; + if (row < tot_m * topk) { + int off = row * c_gl_stride + c_gl_wr % c_gl_stride; + if (!apply_weights) { + C[off] = sh[c_sh_rd]; + } else { + __half* ctrg = reinterpret_cast<__half*>(&C[off]); + __half* csrc = reinterpret_cast<__half*>(&sh[c_sh_rd]); + for (int j = 0; j < 8; ++j) { + ctrg[j] = __float2half(topk_weights[row] * __half2float(csrc[j])); + } + } + c_gl_wr += c_gl_wr_delta; + c_sh_rd += c_sh_rd_delta; + } + } + } + }; + + // Start global fetch and register load pipelines. + auto start_pipes = [&]() { + // TODO re-enable after fixing this function + // fetch_sorted_ids_to_shared(); + // __syncthreads(); + + #pragma unroll + for (int i = 0; i < stages - 1; i++) { + if (has_act_order && i == 0) { + int last_g_idx = slice_k_start + stages * tb_k * 2; + if (last_g_idx >= prob_k) { + last_g_idx = prob_k - 1; + } + fetch_scales_to_shared(true, g_idx[slice_k_start], g_idx[last_g_idx]); + } + fetch_to_shared(i, i, i < slice_iters); + } + + zero_accums(); + wait_for_stage(); + init_same_group(0); + fetch_to_registers(0, 0); + fetch_scales_to_registers(0, 0); + a_gl_rd += a_gl_rd_delta_o * (stages - 1); + slice_k_start_shared_fetch += tb_k * (stages - 1); + }; + if (slice_iters) { + start_pipes(); + } + + // Main loop. + while (slice_iters) { + // We unroll over both the global fetch and the register load pipeline to + // ensure all shared memory accesses are static. Note that both pipelines + // have even length meaning that the next iteration will always start at + // index 0. + #pragma unroll + for (int pipe = 0; pipe < stages;) { + #pragma unroll + for (int k = 0; k < b_sh_wr_iters; k++) { + fetch_to_registers(k + 1, pipe % stages); + fetch_scales_to_registers(k + 1, pipe); + if (k == b_sh_wr_iters - 2) { + fetch_to_shared((pipe + stages - 1) % stages, pipe, + slice_iters >= stages); + pipe++; + wait_for_stage(); + init_same_group(pipe % stages); + } + matmul(k); + } + slice_iters--; + if (slice_iters == 0) { + break; + } + } + + a_gl_rd += a_gl_rd_delta_o * stages; + slice_k_start += tb_k * stages; + slice_k_start_shared_fetch += tb_k * stages; + + if constexpr (has_act_order) { + int first_group_id = g_idx[slice_k_start]; + int last_g_idx = slice_k_start + stages * tb_k * 2; + if (last_g_idx >= prob_k) { + last_g_idx = prob_k - 1; + } + int last_group_id = g_idx[last_g_idx]; + if (last_group_id >= sh_first_group_id + sh_num_groups) { + fetch_scales_to_shared(false, first_group_id, last_group_id); + __syncthreads(); + } + } + + // Process results and, if necessary, proceed to the next column slice. + // While this pattern may not be the most readable, other ways of writing + // the loop seemed to noticeably worse performance after compilation. + if (slice_iters == 0) { + cp_async_wait<0>(); + bool last = slice_idx == slice_count - 1; + if constexpr (!has_act_order && group_blocks == -1) { + if constexpr (w_type.size_bits() == 8) { + if (s_sh_wr_pred) { + cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]); + } + cp_async_fence(); + } else { + // For 4-bit per-column scales, we only fetch them here in the + // final step before write-out + if (last) { + if (s_sh_wr_pred) { + cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]); + } + cp_async_fence(); + } + } + } + + thread_block_reduce(); + if constexpr (!has_act_order && group_blocks == -1) { + if constexpr (w_type.size_bits() == 8) { + cp_async_wait<0>(); + __syncthreads(); + if (threadIdx.x / 32 < thread_n_blocks / 4) { + reinterpret_cast(&frag_s)[0] = sh_s[s_sh_rd + 0]; + reinterpret_cast(&frag_s)[1] = sh_s[s_sh_rd + 4]; + } + + } else { + if (last) { + cp_async_wait<0>(); + __syncthreads(); + if (threadIdx.x / 32 < thread_n_blocks / 4) { + reinterpret_cast(&frag_s)[0] = sh_s[s_sh_rd + 0]; + reinterpret_cast(&frag_s)[1] = sh_s[s_sh_rd + 4]; + } + } + } + } + + // For 8-bit channelwise, we apply the scale before the global reduction + // that converts the fp32 results to fp16 (so that we avoid possible + // overflow in fp16) + if constexpr (!has_act_order && group_blocks == -1 && + w_type.size_bits() == 8) { + if (threadIdx.x / 32 < thread_n_blocks / 4) { + #pragma unroll + for (int i = 0; i < thread_m_blocks; i++) { + #pragma unroll + for (int j = 0; j < 4; j++) { + scale_float(reinterpret_cast(&frag_c[i][j][0][0]), + frag_s[j / 2][2 * (j % 2) + 0]); + scale_float(reinterpret_cast(&frag_c[i][j][0][2]), + frag_s[j / 2][2 * (j % 2) + 0]); + + scale_float(reinterpret_cast(&frag_c[i][j][1][0]), + frag_s[j / 2][2 * (j % 2) + 1]); + scale_float(reinterpret_cast(&frag_c[i][j][1][2]), + frag_s[j / 2][2 * (j % 2) + 1]); + } + } + } + } + + if (slice_count > 1) { // only globally reduce if there is more than one + // block in a slice + barrier_acquire(&locks[slice_col], slice_idx); + global_reduce(slice_idx == 0, last); + barrier_release(&locks[slice_col], last); + } + if (last) // only the last block in a slice actually writes the result + write_result(); + slice_row = 0; + slice_col_par++; + slice_col++; + init_slice(); + if (slice_iters) { + a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + + (threadIdx.x % a_gl_rd_delta_o); + #pragma unroll + for (int i = 0; i < b_sh_wr_iters; i++) + B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles; + if (slice_col == 0) { + #pragma unroll + for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride; + } + + // Update slice k/n for scales loading + if constexpr (has_act_order) { + slice_k_start = tb_k * slice_row; + slice_k_finish = slice_k_start + tb_k * slice_iters; + slice_k_start_shared_fetch = slice_k_start; + slice_n_offset = act_s_col_tb_stride * slice_col; + + } else { + s_gl_rd = s_sh_stride * slice_col + threadIdx.x; + } + start_pipes(); + } + } + } +} + +template shared + // fetch pipeline + const bool has_act_order, // whether act_order is enabled + const int group_blocks = -1 // number of consecutive 16x16 blocks + // with a separate quantization scale + > +__global__ void MarlinMoE( + const int4* __restrict__ A, // fp16 input matrix of shape mxk + const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn + int4* __restrict__ C, // fp16 output buffer of shape mxn + const int* __restrict__ sorted_ids_base, // int32 sorted ids of experts + const float* __restrict__ topk_weights, // float topk weights + const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape + // (k/groupsize)xn + const int* __restrict__ g_idx, // int32 group indices of shape k + const int* __restrict__ expert_offsets, + int num_groups, // number of scale groups per output channel + int expert_idx, // idx of current expert + int num_experts, // number of experts + int topk, // topk parameter of moe + int prob_m, // batch dimension m + int prob_n, // output dimension n + int prob_k, // reduction dimension k + int tot_m, // total number of rows in A and C + int* locks, // extra global storage for barrier synchronization + bool replicate_input, // do we use the same input for each expert? + bool apply_weights, // apply weights to output + int current_m_block, // current m block to start kernel computation from + int max_par, // maximum parallelism + int cfg_max_m_blocks // upper bound on m blocks +) { + int m_block_ctr = current_m_block; + + const int* sorted_ids_expert = + sorted_ids_base + expert_offsets[expert_idx] + m_block_ctr * 4 * max_par; + int tot_its = expert_offsets[expert_idx + 1] - expert_offsets[expert_idx]; + if (tot_its == 0) { + return; + } + int tot_m_blocks = ceildiv(tot_its, 16); + int pad = 16 * tot_m_blocks - tot_its; + + if (m_block_ctr >= tot_m_blocks) { + return; + } + + int max_block = tot_m_blocks - m_block_ctr; + prob_m = tot_its - 16 * m_block_ctr; + + int par = 1; + if (max_block > cfg_max_m_blocks) { + // Note that parallel > 1 currently only works for inputs without any + // padding + par = (16 * max_block - pad) / (16 * cfg_max_m_blocks); + if (par > max_par) par = max_par; + prob_m = (16 * cfg_max_m_blocks) * par; + m_block_ctr += cfg_max_m_blocks * (par - 1); + max_block = cfg_max_m_blocks; + } + + if (max_block == 1) { + MarlinMoESingle( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, + prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, + current_m_block); + } else if (max_block == 2) { + MarlinMoESingle( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, + prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, + current_m_block); + } else if (max_block == 3) { + MarlinMoESingle( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, + prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, + current_m_block); + } else { + MarlinMoESingle( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, + prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, + current_m_block); + } +} + +#else + +template shared + // fetch pipeline + const bool has_act_order, // whether act_order is enabled + const int group_blocks = -1 // number of consecutive 16x16 blocks + // with a separate quantization scale + > +__global__ void MarlinMoE( + const int4* __restrict__ A, // fp16 input matrix of shape mxk + const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn + int4* __restrict__ C, // fp16 output buffer of shape mxn + const int* __restrict__ sorted_ids, // int32 sorted ids of experts + const float* __restrict__ topk_weights, // float topk weights + const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape + // (k/groupsize)xn + const int* __restrict__ g_idx, // int32 group indices of shape k + const int* __restrict__ expert_offsets, + int num_groups, // number of scale groups per output channel + int expert_idx, // idx of current expert + int num_experts, // number of experts + int topk, // topk parameter of moe + int prob_m, // batch dimension m + int prob_n, // output dimension n + int prob_k, // reduction dimension k + int tot_m, // total number of rows in A and C + int* locks, // extra global storage for barrier synchronization + bool replicate_input, // do we use the same input for each expert? + bool apply_weights, // apply weights to output + int current_m_block, // current m block to start kernel computation from + int max_par, // maximum parallelism + int cfg_max_m_blocks // upper bound on m blocks + +) { + // Marlin is not implemented yet for SM < 8.0 + assert(false); + return; +} + +#endif + +// 8 warps are a good choice since every SM has 4 schedulers and having more +// than 1 warp per schedule allows some more latency hiding. At the same time, +// we want relatively few warps to have many registers per warp and small tiles. +const int USER_THREADS = + 256; // Note: This is only used with user-provided thread_k/n +const int STAGES = 4; // 4 pipeline stages fit into shared memory +// const int SHARED_MEM = +// 96 * 1024; // max shared memory on compute capability 8.6 (< 8.0) + +static constexpr int min_thread_n = 64; +static constexpr int min_thread_k = 64; + +#define __CALL_IF_MOE(W_TYPE, THREAD_N_BLOCKS, THREAD_K_BLOCKS, HAS_ACT_ORDER, \ + GROUP_BLOCKS, NUM_THREADS) \ + else if (q_type == W_TYPE && thread_n_blocks == THREAD_N_BLOCKS && \ + thread_k_blocks == THREAD_K_BLOCKS && \ + has_act_order == HAS_ACT_ORDER && \ + group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS) { \ + cudaFuncSetAttribute( \ + MarlinMoE, \ + cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ + MarlinMoE \ + <<>>( \ + A_ptr, B_ptr, C_ptr, sorted_ids_ptr, topk_weights_ptr, s_ptr, \ + g_idx_ptr, expert_offsets_ptr, num_groups, expert_idx, \ + num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, \ + replicate_input, apply_weights, m_block, max_par, \ + cfg_max_m_blocks); \ + } + +#define GPTQ_CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \ + __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \ + __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \ + __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \ + __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \ + __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) + +} diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu new file mode 100644 index 0000000000000..a6fe082632750 --- /dev/null +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu @@ -0,0 +1,29 @@ +#include "marlin_moe_kernel_ku4b8.h" + +namespace marlin_moe { + +// We return bool so we can create these different kernel calls as a sequence +// of if-elseif's. +bool call_marlin_moe_kernel_ku4b8( + vllm::ScalarType const& q_type, int thread_n_blocks, + int thread_k_blocks, bool has_act_order, int group_blocks, + int num_threads, int blocks, int max_shared_mem, cudaStream_t stream, + const int4* A_ptr, const int4* B_ptr, int4* C_ptr, + const int* sorted_ids_ptr, const float* topk_weights_ptr, const int4* s_ptr, + const int* g_idx_ptr, int* expert_offsets_ptr, + int num_groups, int expert_idx, int num_experts, int topk, int prob_m, + int prob_n, int prob_k, int tot_m, int* locks, bool replicate_input, + bool apply_weights, int m_block, int max_par, int cfg_max_m_blocks) { + if (false) { + } + GPTQ_CALL_IF_MOE(vllm::kU4B8, 16, 4, 256) + GPTQ_CALL_IF_MOE(vllm::kU4B8, 8, 8, 256) + GPTQ_CALL_IF_MOE(vllm::kU4B8, 8, 4, 128) + GPTQ_CALL_IF_MOE(vllm::kU4B8, 4, 8, 128) + else { + return false; + } + return true; +} + +} // namespace marlin_moe diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h new file mode 100644 index 0000000000000..21b7a7b6eeec0 --- /dev/null +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h @@ -0,0 +1,20 @@ +#pragma once + +#include "marlin_moe_kernel.h" + +namespace marlin_moe { + +// We return bool so we can create these different kernel calls as a sequence +// of if-elseif's. +bool call_marlin_moe_kernel_ku4b8( + vllm::ScalarType const& q_type, int thread_n_blocks, + int thread_k_blocks, bool has_act_order, int group_blocks, + int num_threads, int blocks, int max_shared_mem, cudaStream_t stream, + const int4* A_ptr, const int4* B_ptr, int4* C_ptr, + const int* sorted_ids_ptr, const float* topk_weights_ptr, const int4* s_ptr, + const int* g_idx_ptr, int* expert_offsets_ptr, + int num_groups, int expert_idx, int num_experts, int topk, int prob_m, + int prob_n, int prob_k, int tot_m, int* locks, bool replicate_input, + bool apply_weights, int m_block, int max_par, int cfg_max_m_blocks); + +} // namespace marlin_moe diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu new file mode 100644 index 0000000000000..804cac0217f08 --- /dev/null +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu @@ -0,0 +1,29 @@ +#include "marlin_moe_kernel_ku8b128.h" + +namespace marlin_moe { + +// We return bool so we can create these different kernel calls as a sequence +// of if-elseif's. +bool call_marlin_moe_kernel_ku8b128( + vllm::ScalarType const& q_type, int thread_n_blocks, + int thread_k_blocks, bool has_act_order, int group_blocks, + int num_threads, int blocks, int max_shared_mem, cudaStream_t stream, + const int4* A_ptr, const int4* B_ptr, int4* C_ptr, + const int* sorted_ids_ptr, const float* topk_weights_ptr, const int4* s_ptr, + const int* g_idx_ptr, int* expert_offsets_ptr, + int num_groups, int expert_idx, int num_experts, int topk, int prob_m, + int prob_n, int prob_k, int tot_m, int* locks, bool replicate_input, + bool apply_weights, int m_block, int max_par, int cfg_max_m_blocks) { + if (false) { + } + GPTQ_CALL_IF_MOE(vllm::kU8B128, 16, 4, 256) + GPTQ_CALL_IF_MOE(vllm::kU8B128, 8, 8, 256) + GPTQ_CALL_IF_MOE(vllm::kU8B128, 8, 4, 128) + GPTQ_CALL_IF_MOE(vllm::kU8B128, 4, 8, 128) + else { + return false; + } + return true; +} + +} // namespace marlin_moe diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h new file mode 100644 index 0000000000000..c498420989309 --- /dev/null +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h @@ -0,0 +1,18 @@ +#pragma once + +#include "marlin_moe_kernel.h" + +namespace marlin_moe { + +bool call_marlin_moe_kernel_ku8b128( + vllm::ScalarType const& q_type, int thread_n_blocks, + int thread_k_blocks, bool has_act_order, int group_blocks, + int num_threads, int blocks, int max_shared_mem, cudaStream_t stream, + const int4* A_ptr, const int4* B_ptr, int4* C_ptr, + const int* sorted_ids_ptr, const float* topk_weights_ptr, const int4* s_ptr, + const int* g_idx_ptr, int* expert_offsets_ptr, + int num_groups, int expert_idx, int num_experts, int topk, int prob_m, + int prob_n, int prob_k, int tot_m, int* locks, bool replicate_input, + bool apply_weights, int m_block, int max_par, int cfg_max_m_blocks); + +} diff --git a/csrc/moe/marlin_moe_ops.cu b/csrc/moe/marlin_moe_ops.cu index 49cc03f827f68..dfe0437414013 100644 --- a/csrc/moe/marlin_moe_ops.cu +++ b/csrc/moe/marlin_moe_ops.cu @@ -26,6 +26,8 @@ #include #include "core/scalar_type.hpp" +#include "marlin_kernels/marlin_moe_kernel_ku4b8.h" +#include "marlin_kernels/marlin_moe_kernel_ku8b128.h" template inline std::string str(T x) { @@ -34,230 +36,8 @@ inline std::string str(T x) { namespace marlin_moe { -constexpr int ceildiv(int a, int b) { return (a + b - 1) / b; } - #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 -// Instances of `Vec` are used to organize groups of >>registers<<, as needed -// for instance as inputs to tensor core operations. Consequently, all -// corresponding index accesses must be compile-time constants, which is why we -// extensively use `#pragma unroll` throughout the kernel code to guarantee -// this. -template -struct Vec { - T elems[n]; - __device__ T& operator[](int i) { return elems[i]; } -}; - -using I4 = Vec; - -// Matrix fragments for tensor core instructions; their precise layout is -// documented here: -// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-fragments-for-mma-m16n8k16-with-floating-point-type -using FragA = Vec; -using FragB = Vec; -using FragC = Vec; -using FragS = Vec; // quantization scales - -// Predicated asynchronous global->shared copy; used for inputs A where we apply -// predication to handle batchsizes that are not multiples of 16. -__device__ inline void cp_async4_pred(void* smem_ptr, const void* glob_ptr, - bool pred = true) { - const int BYTES = 16; - uint32_t smem = static_cast(__cvta_generic_to_shared(smem_ptr)); - asm volatile( - "{\n" - " .reg .pred p;\n" - " setp.ne.b32 p, %0, 0;\n" - " @p cp.async.cg.shared.global [%1], [%2], %3;\n" - "}\n" ::"r"((int)pred), - "r"(smem), "l"(glob_ptr), "n"(BYTES)); -} - -// Asynchronous global->shared copy -__device__ inline void cp_async4(void* smem_ptr, const void* glob_ptr) { - const int BYTES = 16; - uint32_t smem = static_cast(__cvta_generic_to_shared(smem_ptr)); - asm volatile( - "{\n" - " cp.async.cg.shared.global [%0], [%1], %2;\n" - "}\n" ::"r"(smem), - "l"(glob_ptr), "n"(BYTES)); -} - -// Async copy fence. -__device__ inline void cp_async_fence() { - asm volatile("cp.async.commit_group;\n" ::); -} - -// Wait until at most `n` async copy stages are still pending. -template -__device__ inline void cp_async_wait() { - asm volatile("cp.async.wait_group %0;\n" ::"n"(n)); -} - -// m16n8k16 tensor core mma instruction with fp16 inputs and fp32 -// output/accumulation. -__device__ inline void mma(const FragA& a_frag, const FragB& frag_b, - FragC& frag_c) { - const uint32_t* a = reinterpret_cast(&a_frag); - const uint32_t* b = reinterpret_cast(&frag_b); - float* c = reinterpret_cast(&frag_c); - asm volatile( - "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 " - "{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n" - : "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3]) - : "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3]), "r"(b[0]), "r"(b[1]), - "f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3])); -} - -// Instruction for loading a full 16x16 matrix fragment of operand A from shared -// memory, directly in tensor core layout. -__device__ inline void ldsm4(FragA& frag_a, const void* smem_ptr) { - uint32_t* a = reinterpret_cast(&frag_a); - uint32_t smem = static_cast(__cvta_generic_to_shared(smem_ptr)); - asm volatile("ldmatrix.sync.aligned.m8n8.x4.shared.b16 {%0,%1,%2,%3}, [%4];\n" - : "=r"(a[0]), "=r"(a[1]), "=r"(a[2]), "=r"(a[3]) - : "r"(smem)); -} - -// Lookup-table based 3-input logical operation; explicitly used for -// dequantization as the compiler does not seem to automatically recognize it in -// all cases. -template -__device__ inline int lop3(int a, int b, int c) { - int res; - asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" - : "=r"(res) - : "r"(a), "r"(b), "r"(c), "n"(lut)); - return res; -} - -// Constructs destination register by taking bytes from 2 sources (based on -// mask) -template -__device__ inline uint32_t prmt(uint32_t a) { - uint32_t res; - asm volatile("prmt.b32 %0, %1, %2, %3;\n" - : "=r"(res) - : "r"(a), "n"(start_byte), "n"(mask)); - return res; -} - -template -__device__ inline FragB dequant(int q); - -// Efficiently dequantize 4bit values packed in an int32 value into a full -// B-fragment of 4 fp16 values. We mostly follow the strategy in the link below, -// with some small changes: -// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L215-L287 -template <> -__device__ inline FragB dequant(int q) { - const int LO = 0x000f000f; - const int HI = 0x00f000f0; - const int EX = 0x64006400; - // Guarantee that the `(a & b) | c` operations are LOP3s. - int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX); - int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX); - // We want signed int4 outputs, hence we fuse the `-8` symmetric zero point - // directly into `SUB` and `ADD`. - const int SUB = 0x64086408; - const int MUL = 0x2c002c00; - const int ADD = 0xd480d480; - FragB frag_b; - frag_b[0] = __hsub2(*reinterpret_cast(&lo), - *reinterpret_cast(&SUB)); - frag_b[1] = __hfma2(*reinterpret_cast(&hi), - *reinterpret_cast(&MUL), - *reinterpret_cast(&ADD)); - return frag_b; -} - -// Fast Int8ToFp16: Efficiently dequantize 8bit int values to fp16 -// Reference: -// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L53-L85 -template <> -__device__ inline FragB dequant(int q) { - static constexpr uint32_t mask_for_elt_01 = 0x5250; - static constexpr uint32_t mask_for_elt_23 = 0x5351; - static constexpr uint32_t start_byte_for_fp16 = 0x64646464; - - uint32_t lo = prmt(q); - uint32_t hi = prmt(q); - - static constexpr uint32_t I8s_TO_F16s_MAGIC_NUM = 0x64806480; - - FragB frag_b; - frag_b[0] = __hsub2(*reinterpret_cast(&lo), - *reinterpret_cast(&I8s_TO_F16s_MAGIC_NUM)); - frag_b[1] = __hsub2(*reinterpret_cast(&hi), - *reinterpret_cast(&I8s_TO_F16s_MAGIC_NUM)); - return frag_b; -} - -// Multiply dequantized values by the corresponding quantization scale; used -// only for grouped quantization. -__device__ inline void scale(FragB& frag_b, FragS& frag_s, int i) { - half2 s = __half2half2(reinterpret_cast<__half*>(&frag_s)[i]); - frag_b[0] = __hmul2(frag_b[0], s); - frag_b[1] = __hmul2(frag_b[1], s); -} - -// Given 2 floats multiply by 2 scales (halves) -__device__ inline void scale_float(float* c, FragS& s) { - __half* s_ptr = reinterpret_cast<__half*>(&s); - c[0] = __fmul_rn(c[0], __half2float(s_ptr[0])); - c[1] = __fmul_rn(c[1], __half2float(s_ptr[1])); -} - -// Same as above, but for act_order (each K is multiplied individually) -__device__ inline void scale4(FragB& frag_b, FragS& frag_s_1, FragS& frag_s_2, - FragS& frag_s_3, FragS& frag_s_4, int i) { - __half2 s_val_1_2; - s_val_1_2.x = reinterpret_cast<__half*>(&frag_s_1)[i]; - s_val_1_2.y = reinterpret_cast<__half*>(&frag_s_2)[i]; - - __half2 s_val_3_4; - s_val_3_4.x = reinterpret_cast<__half*>(&frag_s_3)[i]; - s_val_3_4.y = reinterpret_cast<__half*>(&frag_s_4)[i]; - - frag_b[0] = __hmul2(frag_b[0], s_val_1_2); - frag_b[1] = __hmul2(frag_b[1], s_val_3_4); -} - -// Wait until barrier reaches `count`, then lock for current threadblock. -__device__ inline void barrier_acquire(int* lock, int count) { - if (threadIdx.x == 0) { - int state = -1; - do - // Guarantee that subsequent writes by this threadblock will be visible - // globally. - asm volatile("ld.global.acquire.gpu.b32 %0, [%1];\n" - : "=r"(state) - : "l"(lock)); - while (state != count); - } - __syncthreads(); -} - -// Release barrier and increment visitation count. -__device__ inline void barrier_release(int* lock, bool reset = false) { - __syncthreads(); - if (threadIdx.x == 0) { - if (reset) { - lock[0] = 0; - return; - } - int val = 1; - // Make sure that all writes since acquiring this barrier are visible - // globally, while releasing the barrier. - asm volatile("fence.acq_rel.gpu;\n"); - asm volatile("red.relaxed.gpu.global.add.s32 [%0], %1;\n" - : - : "l"(lock), "r"(val)); - } -} - // For a given "a" of size [M,K] performs a permutation of the K columns based // on the given "perm" indices. __global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr, @@ -335,1106 +115,6 @@ __global__ void compute_expert_offsets(int const* __restrict__ topk_ids, __syncthreads(); } -template shared - // fetch pipeline - const bool has_act_order, // whether act_order is enabled - const int group_blocks = -1 // number of consecutive 16x16 blocks - // with a separate quantization scale - > -__device__ inline void MarlinMoESingle( - const int4* __restrict__ A, // fp16 input matrix of shape mxk - const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn - int4* __restrict__ C, // fp16 output buffer of shape mxn - const int* __restrict__ sorted_ids, // int32 sorted ids of experts - const float* __restrict__ topk_weights, // float topk weights - const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape - // (k/groupsize)xn - const int* __restrict__ g_idx, // int32 group indices of shape k - const int* __restrict__ expert_offsets, - int num_groups, // number of scale groups per output channel - int expert_idx, // idx of current expert - int num_experts, // number of experts - int topk, // topk parameter of moe - int prob_m, // batch dimension m - int prob_n, // output dimension n - int prob_k, // reduction dimension k - int tot_m, // total number of rows in A and C - int* locks, // extra global storage for barrier synchronization - bool replicate_input, // do we use the same input for each expert? - bool apply_weights, // apply weights to output - int current_m_block // current m block to start kernel computation from -) { - static constexpr auto w_type = vllm::ScalarType::from_id(w_type_id); - constexpr int pack_factor = 32 / w_type.size_bits(); - - // For larger GEMMs we run multiple batchsize 64 versions in parallel for a - // better partitioning with less reductions - int parallel = 1; - if (prob_m > 16 * thread_m_blocks) { - parallel = prob_m / (16 * thread_m_blocks); - prob_m = 16 * thread_m_blocks; - } - - int k_tiles = prob_k / 16 / thread_k_blocks; - int n_tiles = prob_n / 16 / thread_n_blocks; - int iters = ceildiv(k_tiles * n_tiles * parallel, gridDim.x); - - if constexpr (!has_act_order && group_blocks != -1) { - if (group_blocks >= thread_k_blocks) { - // Ensure that the number of tiles in each stripe is a multiple of the - // groupsize; this avoids an annoying special case where a stripe starts - // in the middle of group. - iters = (group_blocks / thread_k_blocks) * - ceildiv(iters, (group_blocks / thread_k_blocks)); - } - } - - int slice_row = (iters * blockIdx.x) % k_tiles; - int slice_col_par = (iters * blockIdx.x) / k_tiles; - int slice_col = slice_col_par; - int slice_iters; // number of threadblock tiles in the current slice - int slice_count = - 0; // total number of active threadblocks in the current slice - int slice_idx; // index of threadblock in current slice; numbered bottom to - // top - - // We can easily implement parallel problem execution by just remapping - // indices and advancing global pointers - if (slice_col_par >= n_tiles) { - locks += (slice_col_par / n_tiles) * n_tiles; - slice_col = slice_col_par % n_tiles; - sorted_ids += (slice_col_par / n_tiles) * 16 * thread_m_blocks; - } - - // Compute all information about the current slice which is required for - // synchronization. - auto init_slice = [&]() { - slice_iters = - iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row); - if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0; - if (slice_iters == 0) return; - if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row; - slice_count = 1; - slice_idx = 0; - int col_first = iters * ceildiv(k_tiles * slice_col_par, iters); - if (col_first <= k_tiles * (slice_col_par + 1)) { - int col_off = col_first - k_tiles * slice_col_par; - slice_count = ceildiv(k_tiles - col_off, iters); - if (col_off > 0) slice_count++; - int delta_first = iters * blockIdx.x - col_first; - if (delta_first < 0 || (col_off == 0 && delta_first == 0)) - slice_idx = slice_count - 1; - else { - slice_idx = slice_count - 1 - delta_first / iters; - if (col_off > 0) slice_idx--; - } - } - if (slice_col == n_tiles) { - sorted_ids += 16 * thread_m_blocks; - locks += n_tiles; - slice_col = 0; - } - }; - init_slice(); - - // A sizes/strides - - // stride of the A matrix in global memory - int a_gl_stride = prob_k / 8; - // stride of an A matrix tile in shared memory - constexpr int a_sh_stride = 16 * thread_k_blocks / 8; - // delta between subsequent A tiles in global memory - constexpr int a_gl_rd_delta_o = 16 * thread_k_blocks / 8; - // between subsequent accesses within a tile - int a_gl_rd_delta_i = a_gl_stride * (threads / a_gl_rd_delta_o); - // between shared memory writes - constexpr int a_sh_wr_delta = a_sh_stride * (threads / a_gl_rd_delta_o); - // between shared memory tile reads - constexpr int a_sh_rd_delta_o = 2 * ((threads / 32) / (thread_n_blocks / 4)); - // within a shared memory tile - constexpr int a_sh_rd_delta_i = a_sh_stride * 16; - // overall size of a tile - constexpr int a_sh_stage = a_sh_stride * (16 * thread_m_blocks); - // number of shared write iterations for a tile - constexpr int a_sh_wr_iters = ceildiv(a_sh_stage, a_sh_wr_delta); - - // B sizes/strides - int b_gl_stride = 16 * prob_n / (pack_factor * 4); - constexpr int b_sh_stride = ((thread_n_blocks * 16) * 16 / pack_factor) / 4; - constexpr int b_thread_vecs = w_type.size_bits() == 4 ? 1 : 2; - constexpr int b_sh_stride_threads = b_sh_stride / b_thread_vecs; - - int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks; - int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride_threads); - constexpr int b_sh_wr_delta = threads * b_thread_vecs; - constexpr int b_sh_rd_delta = threads * b_thread_vecs; - constexpr int b_sh_stage = b_sh_stride * thread_k_blocks; - constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta; - - // Scale sizes/strides without act_order - int s_gl_stride = prob_n / 8; - constexpr int s_sh_stride = 16 * thread_n_blocks / 8; - constexpr int s_tb_groups = - !has_act_order && group_blocks != -1 && group_blocks < thread_k_blocks - ? thread_k_blocks / group_blocks - : 1; - constexpr int s_sh_stage = s_tb_groups * s_sh_stride; - int s_gl_rd_delta = s_gl_stride; - // Scale size/strides with act_order - constexpr int tb_k = 16 * thread_k_blocks; - constexpr int g_idx_stage = has_act_order ? (tb_k * sizeof(int)) / 16 : 0; - // constexpr int act_s_row_stride = 1; - // int act_s_col_stride = act_s_row_stride * num_groups; - int act_s_col_stride = 1; - int act_s_col_warp_stride = act_s_col_stride * 8; - int tb_n_warps = thread_n_blocks / 4; - int act_s_col_tb_stride = act_s_col_warp_stride * tb_n_warps; - - constexpr int sorted_sh_stride = threads; - constexpr int sorted_gl_stride = threads; - - // Global A read index of current thread. - int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + - (threadIdx.x % a_gl_rd_delta_o); - a_gl_rd += a_gl_rd_delta_o * slice_row; - // Shared write index of current thread. - int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) + - (threadIdx.x % a_gl_rd_delta_o); - // Shared read index. - int a_sh_rd = - a_sh_stride * ((threadIdx.x % 32) % 16) + (threadIdx.x % 32) / 16; - a_sh_rd += 2 * ((threadIdx.x / 32) / (thread_n_blocks / 4)); - - int b_gl_rd = b_gl_stride * (threadIdx.x / b_sh_stride_threads) + - (threadIdx.x % b_sh_stride_threads) * b_thread_vecs; - b_gl_rd += b_sh_stride * slice_col; - b_gl_rd += b_gl_rd_delta_o * slice_row; - int b_sh_wr = threadIdx.x * b_thread_vecs; - int b_sh_rd = threadIdx.x * b_thread_vecs; - - // For act_order - constexpr int k_iter_size = tb_k / b_sh_wr_iters; - int slice_k_start = tb_k * slice_row; - int slice_k_finish = slice_k_start + tb_k * slice_iters; - int slice_k_start_shared_fetch = slice_k_start; - int slice_n_offset = act_s_col_tb_stride * slice_col; - - // No act_order - int s_gl_rd; - if constexpr (!has_act_order) { - if constexpr (group_blocks == -1) { - s_gl_rd = s_sh_stride * slice_col + threadIdx.x; - } else { - s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) + - s_sh_stride * slice_col + threadIdx.x; - } - } - int s_sh_wr = threadIdx.x; - bool s_sh_wr_pred = threadIdx.x < s_sh_stride; - - // We use a different scale layout for grouped and column-wise quantization as - // we scale a `half2` tile in column-major layout in the former and in - // row-major in the latter case. - int s_sh_rd; - if constexpr (group_blocks != -1) - s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + - (threadIdx.x % 32) / 4; - else - s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + - (threadIdx.x % 32) % 4; - - int sh_first_group_id = -1; - int sh_num_groups = -1; - constexpr int sh_max_num_groups = 32; - - int shs_size; - if constexpr (has_act_order) - shs_size = sh_max_num_groups * s_sh_stride + threads; - else - shs_size = group_blocks > 0 ? stages * s_sh_stage : threads; - - extern __shared__ int4 sh[]; - // Shared memory storage for global fetch pipelines. - int4* sh_a = sh; - int4* sh_b = sh_a + (stages * a_sh_stage); - int4* sh_g_idx = sh_b + (stages * b_sh_stage); - int4* sh_s = sh_g_idx + (stages * g_idx_stage); - int* sh_sorted = (int*)(sh_s + shs_size); - - // Precompute which thread should not read memory in which iterations; this is - // needed if there are more threads than required for a certain tilesize or - // when the batchsize is not a multiple of 16. - bool a_sh_wr_pred[a_sh_wr_iters]; - #pragma unroll - for (int i = 0; i < a_sh_wr_iters; i++) { - int a_idx = a_sh_wr_delta * i + a_sh_wr; - int row = a_idx / a_gl_rd_delta_o; - if (row >= prob_m) { - a_sh_wr_pred[i] = false; - } else { - a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m; - } - } - - // To ensure that writing and reading A tiles to/from shared memory, the - // latter in fragment format, is fully bank conflict free, we need to use a - // rather fancy XOR-based layout. The key here is that neither reads nor - // writes of the 16-byte `int4` blocks of 8 consecutive threads involve the - // same shared memory banks. Further, it seems (based on NSight-Compute) that - // each warp must also write a consecutive memory segment? - auto transform_a = [&](int i) { - int row = i / a_gl_rd_delta_o; - return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row; - }; - // Since the computation of this remapping is non-trivial and, due to our main - // loop unrolls, all shared memory accesses are static, we simply precompute - // both transformed reads and writes. - int a_sh_wr_trans[a_sh_wr_iters]; - #pragma unroll - for (int i = 0; i < a_sh_wr_iters; i++) - a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr); - int a_sh_rd_trans[b_sh_wr_iters][thread_m_blocks]; - #pragma unroll - for (int i = 0; i < b_sh_wr_iters; i++) { - #pragma unroll - for (int j = 0; j < thread_m_blocks; j++) - a_sh_rd_trans[i][j] = - transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd); - } - - // Since B-accesses have non-constant stride they have to be computed at - // runtime; we break dependencies between subsequent accesses with a tile by - // maintining multiple pointers (we have enough registers), a tiny - // optimization. - const int4* B_ptr[b_sh_wr_iters]; - #pragma unroll - for (int i = 0; i < b_sh_wr_iters; i++) - B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd; - - // Register storage for double buffer of shared memory reads. - FragA frag_a[2][thread_m_blocks]; - I4 frag_b_quant[2][b_thread_vecs]; - FragC frag_c[thread_m_blocks][4][2]; - FragS frag_s[2][4]; // No act-order - FragS act_frag_s[2][4][4]; // For act-order - - // Zero accumulators. - auto zero_accums = [&]() { - #pragma unroll - for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++) - reinterpret_cast(frag_c)[i] = 0; - }; - - auto fetch_scales_to_shared = [&](bool is_async, int first_group_id, - int last_group_id) { - sh_first_group_id = first_group_id; - sh_num_groups = last_group_id - first_group_id + 1; - - if (sh_num_groups < sh_max_num_groups) { - sh_num_groups = sh_max_num_groups; - } - - if (sh_first_group_id + sh_num_groups > num_groups) { - sh_num_groups = num_groups - sh_first_group_id; - } - - int row_offset = first_group_id * s_gl_stride; - - if (is_async) { - for (int i = 0; i < sh_num_groups; i++) { - if (threadIdx.x < s_sh_stride) { - cp_async4_pred(&sh_s[(i * s_sh_stride) + threadIdx.x], - &scales_ptr[row_offset + (i * s_gl_stride) + - slice_n_offset + threadIdx.x]); - } - } - } else { - for (int i = 0; i < sh_num_groups; i++) { - if (threadIdx.x < s_sh_stride) { - sh_s[(i * s_sh_stride) + threadIdx.x] = - scales_ptr[row_offset + (i * s_gl_stride) + slice_n_offset + - threadIdx.x]; - } - } - } - }; - // Asynchronously fetch the next A, B and s tile from global to the next - // shared memory pipeline location. - auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) { - if (pred) { - int4* sh_a_stage = sh_a + a_sh_stage * pipe; - #pragma unroll - for (int i = 0; i < a_sh_wr_iters; i++) { - int a_idx = a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off; - int row = a_idx / a_gl_stride; - int sorted_row = - replicate_input ? sorted_ids[row] / topk : sorted_ids[row]; - int new_idx = sorted_row * a_gl_stride + a_idx % a_gl_stride; - if (sorted_row < tot_m * (replicate_input ? 1 : topk) && - new_idx < a_gl_stride * tot_m * (replicate_input ? 1 : topk)) { - cp_async4_pred(&sh_a_stage[a_sh_wr_trans[i]], &A[new_idx], - a_sh_wr_pred[i]); - } - } - int4* sh_b_stage = sh_b + b_sh_stage * pipe; - #pragma unroll - for (int i = 0; i < b_sh_wr_iters; i++) { - #pragma unroll - for (int j = 0; j < b_thread_vecs; j++) { - cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr + j], B_ptr[i] + j); - } - B_ptr[i] += b_gl_rd_delta_o; - } - - if constexpr (has_act_order) { - // Fetch g_idx thread-block portion - int full_pipe = a_off; - int cur_k = slice_k_start_shared_fetch + tb_k * full_pipe; - if (cur_k < prob_k && cur_k < slice_k_finish) { - int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; - - int4 const* cur_g_idx_stage_ptr = - reinterpret_cast(&g_idx[cur_k]); - - if (threadIdx.x < g_idx_stage) { - cp_async4_pred(&sh_g_idx_stage[threadIdx.x], - &cur_g_idx_stage_ptr[threadIdx.x]); - } - } - } else { - if constexpr (group_blocks != -1) { - int4* sh_s_stage = sh_s + s_sh_stage * pipe; - - if constexpr (group_blocks >= thread_k_blocks) { - // Only fetch scales if this tile starts a new group - if (pipe % (group_blocks / thread_k_blocks) == 0) { - if (s_sh_wr_pred) { - cp_async4(&sh_s_stage[s_sh_wr], &scales_ptr[s_gl_rd]); - } - s_gl_rd += s_gl_rd_delta; - } - } else { - for (int i = 0; i < s_tb_groups; i++) { - if (s_sh_wr_pred) { - cp_async4(&sh_s_stage[i * s_sh_stride + s_sh_wr], - &scales_ptr[s_gl_rd]); - } - s_gl_rd += s_gl_rd_delta; - } - } - } - } - } - // Insert a fence even when we are winding down the pipeline to ensure that - // waiting is also correct at this point. - cp_async_fence(); - }; - - // TODO we are currently hitting illegal memory accesses when fetching - // sorted_ids to shared data: fix this - auto fetch_sorted_ids_to_shared = [&]() { - const int mpt = ceildiv(prob_m, threads); - for (int i = 0; i < mpt; i++) { - if ((i * sorted_gl_stride) + threadIdx.x < prob_m) { - sh_sorted[(i * sorted_sh_stride) + threadIdx.x] = - sorted_ids[(i * sorted_gl_stride) + threadIdx.x]; - } - } - }; - - // Wait until the next thread tile has been loaded to shared memory. - auto wait_for_stage = [&]() { - // We only have `stages - 2` active fetches since we are double buffering - // and can only issue the next fetch when it is guaranteed that the previous - // shared memory load is fully complete (as it may otherwise be - // overwritten). - cp_async_wait(); - __syncthreads(); - }; - - // Load the next sub-tile from the current location in the shared memory pipe - // into the current register buffer. - auto fetch_to_registers = [&](int k, int pipe) { - int4* sh_a_stage = sh_a + a_sh_stage * pipe; - #pragma unroll - for (int i = 0; i < thread_m_blocks; i++) - ldsm4(frag_a[k % 2][i], &sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]); - int4* sh_b_stage = sh_b + b_sh_stage * pipe; - - #pragma unroll - for (int i = 0; i < b_thread_vecs; i++) { - frag_b_quant[k % 2][i] = *reinterpret_cast( - &sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd + i]); - } - }; - - bool is_same_group[stages]; - int same_group_id[stages]; - - auto init_same_group = [&](int pipe) { - if constexpr (!has_act_order) { - is_same_group[pipe] = false; - same_group_id[pipe] = 0; - return; - } - - int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; - int* sh_g_idx_int_ptr = reinterpret_cast(sh_g_idx_stage); - - int group_id_1 = sh_g_idx_int_ptr[0]; - int group_id_2 = sh_g_idx_int_ptr[tb_k - 1]; - - is_same_group[pipe] = group_id_1 == group_id_2; - same_group_id[pipe] = group_id_1; - }; - - auto fetch_scales_to_registers = [&](int k, int full_pipe) { - int pipe = full_pipe % stages; - - if constexpr (!has_act_order) { - // No act-order case - if constexpr (group_blocks != -1) { - if constexpr (group_blocks >= thread_k_blocks) { - int4* sh_s_stage = - sh_s + s_sh_stage * ((group_blocks / thread_k_blocks) * - (pipe / (group_blocks / thread_k_blocks))); - reinterpret_cast(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd]; - } else { - int warp_id = threadIdx.x / 32; - int n_warps = thread_n_blocks / 4; - - int warp_row = warp_id / n_warps; - - int cur_k = warp_row * 16; - cur_k += k_iter_size * (k % b_sh_wr_iters); - - int k_blocks = cur_k / 16; - int cur_group_id = k_blocks / group_blocks; - - int4* sh_s_stage = sh_s + s_sh_stage * pipe; - - reinterpret_cast(&frag_s[k % 2])[0] = - sh_s_stage[s_sh_rd + cur_group_id * s_sh_stride]; - } - } - - return; - } - - // Act-order case - - // Determine K of the "current" thread-block - int cur_k = slice_k_start + tb_k * full_pipe; - if (cur_k >= prob_k || cur_k >= slice_k_finish) { - return; - } - - // Reset (to current thread-block) since we read g_idx portion from the - // shared memory - cur_k = 0; - - // Progress to current iteration - cur_k += k_iter_size * (k % b_sh_wr_iters); - - // Determine "position" inside the thread-block (based on warp and - // thread-id) - int warp_id = threadIdx.x / 32; - int n_warps = - thread_n_blocks / 4; // Each warp processes 4 16-size tiles over N - - int warp_row = warp_id / n_warps; - int warp_col = warp_id % n_warps; - - cur_k += warp_row * 16; - - int th_id = threadIdx.x % 32; - cur_k += (th_id % 4) * 2; // Due to tensor-core layout for fp16 B matrix - - int s_col_shift = - /*slice_n_offset +*/ (act_s_col_warp_stride * warp_col) + - (th_id / 4) * act_s_col_stride; - - if (is_same_group[pipe]) { - if (k % 2 == 0) { - *(reinterpret_cast(&(act_frag_s[k % 2][0][0]))) = - sh_s[(same_group_id[pipe] - sh_first_group_id) * s_sh_stride + - s_col_shift]; - } else { - *(reinterpret_cast(&(act_frag_s[k % 2][0][0]))) = - *(reinterpret_cast(&(act_frag_s[(k - 1) % 2][0][0]))); - } - - for (int i = 1; i < 4; i++) { - *(reinterpret_cast(&(act_frag_s[k % 2][i][0]))) = - *(reinterpret_cast(&(act_frag_s[k % 2][0][0]))); - } - return; - } - - int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; - int* sh_g_idx_int_ptr = reinterpret_cast(sh_g_idx_stage); - - constexpr int k_frag_offsets[4] = {0, 1, 8, - 9}; // Tensor core offsets per thread - - #pragma unroll - for (int i = 0; i < 4; i++) { - int actual_k = cur_k + k_frag_offsets[i]; - - int group_id = sh_g_idx_int_ptr[actual_k]; - int rel_group_id = group_id - sh_first_group_id; - - *(reinterpret_cast(&(act_frag_s[k % 2][i][0]))) = - sh_s[rel_group_id * s_sh_stride + s_col_shift]; - } - }; - - // Execute the actual tensor core matmul of a sub-tile. - auto matmul = [&](int k) { - // We have the m dimension as the inner loop in order to encourage overlapping - // dequantization and matmul operations. - #pragma unroll - for (int j = 0; j < 4; j++) { - int b_quant_0, b_quant_1; - if constexpr (w_type.size_bits() == 4) { - b_quant_0 = frag_b_quant[k % 2][0][j]; - b_quant_1 = b_quant_0 >> 8; - } else { - static_assert(w_type.size_bits() == 8); - int* frag_b_quant_ptr = reinterpret_cast(frag_b_quant[k % 2]); - b_quant_0 = frag_b_quant_ptr[j * 2 + 0]; - b_quant_1 = frag_b_quant_ptr[j * 2 + 1]; - } - - FragB frag_b0 = dequant(b_quant_0); - FragB frag_b1 = dequant(b_quant_1); - - // Apply scale to frag_b0 - if constexpr (has_act_order) { - scale4(frag_b0, act_frag_s[k % 2][0][j], act_frag_s[k % 2][1][j], - act_frag_s[k % 2][2][j], act_frag_s[k % 2][3][j], 0); - } else { - if constexpr (group_blocks != -1) { - scale(frag_b0, frag_s[k % 2][j], 0); - } - } - - // Apply scale to frag_b1 - if constexpr (has_act_order) { - scale4(frag_b1, act_frag_s[k % 2][0][j], act_frag_s[k % 2][1][j], - act_frag_s[k % 2][2][j], act_frag_s[k % 2][3][j], 1); - - } else { - if constexpr (group_blocks != -1) { - scale(frag_b1, frag_s[k % 2][j], 1); - } - } - - #pragma unroll - for (int i = 0; i < thread_m_blocks; i++) { - mma(frag_a[k % 2][i], frag_b0, frag_c[i][j][0]); - mma(frag_a[k % 2][i], frag_b1, frag_c[i][j][1]); - } - } - }; - - // Since we slice across the k dimension of a tile in order to increase the - // number of warps while keeping the n dimension of a tile reasonable, we have - // multiple warps that accumulate their partial sums of the same output - // location; which we have to reduce over in the end. We do in shared memory. - auto thread_block_reduce = [&]() { - constexpr int red_off = threads / b_sh_stride_threads / 2; - if (red_off >= 1) { - int red_idx = threadIdx.x / b_sh_stride_threads; - constexpr int red_sh_stride = b_sh_stride_threads * 4 * 2; - constexpr int red_sh_delta = b_sh_stride_threads; - int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride_threads) + - (threadIdx.x % b_sh_stride_threads); - - // Parallel logarithmic shared memory reduction. We make sure to avoid any - // unnecessary read or write iterations, e.g., for two warps we write only - // once by warp 1 and read only once by warp 0. - - #pragma unroll - for (int m_block = 0; m_block < thread_m_blocks; m_block++) { - #pragma unroll - for (int i = red_off; i > 0; i /= 2) { - if (i <= red_idx && red_idx < 2 * i) { - #pragma unroll - for (int j = 0; j < 4 * 2; j++) { - int red_sh_wr = - red_sh_delta * j + (red_sh_rd - red_sh_stride * i); - if (i < red_off) { - float* c_rd = - reinterpret_cast(&sh[red_sh_delta * j + red_sh_rd]); - float* c_wr = reinterpret_cast(&sh[red_sh_wr]); - #pragma unroll - for (int k = 0; k < 4; k++) - reinterpret_cast(frag_c)[4 * 2 * m_block + j][k] += - c_rd[k] + c_wr[k]; - } - sh[red_sh_wr] = - reinterpret_cast(&frag_c)[4 * 2 * m_block + j]; - } - } - __syncthreads(); - } - if (red_idx == 0) { - #pragma unroll - for (int i = 0; i < 4 * 2; i++) { - float* c_rd = - reinterpret_cast(&sh[red_sh_delta * i + red_sh_rd]); - #pragma unroll - for (int j = 0; j < 4; j++) - reinterpret_cast(frag_c)[4 * 2 * m_block + i][j] += - c_rd[j]; - } - } - __syncthreads(); - } - } - }; - - // Since multiple threadblocks may process parts of the same column slice, we - // finally have to globally reduce over the results. As the striped - // partitioning minimizes the number of such reductions and our outputs are - // usually rather small, we perform this reduction serially in L2 cache. - auto global_reduce = [&](bool first = false, bool last = false) { - // We are very careful here to reduce directly in the output buffer to - // maximize L2 cache utilization in this step. To do this, we write out - // results in FP16 (but still reduce with FP32 compute). - constexpr int active_threads = 32 * thread_n_blocks / 4; - if (threadIdx.x < active_threads) { - int c_gl_stride = prob_n / 8; - int c_gl_wr_delta_o = 8 * c_gl_stride; - int c_gl_wr_delta_i = 4 * (active_threads / 32); - int c_gl_wr = c_gl_stride * ((threadIdx.x % 32) / 4) + - 4 * (threadIdx.x / 32) + threadIdx.x % 4; - c_gl_wr += (2 * thread_n_blocks) * slice_col; - constexpr int c_sh_wr_delta = active_threads; - int c_sh_wr = threadIdx.x; - - int row = (threadIdx.x % 32) / 4; - - if (!first) { - // Interestingly, doing direct global accesses here really seems to mess up - // the compiler and lead to slowdowns, hence we also use async-copies even - // though these fetches are not actually asynchronous. - #pragma unroll - for (int i = 0; i < thread_m_blocks * 4; i++) { - int c_idx = - c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2); - int sorted_row = sorted_ids[c_idx / c_gl_stride]; - int new_idx = sorted_row * c_gl_stride + c_idx % c_gl_stride; - cp_async4_pred(&sh[c_sh_wr + c_sh_wr_delta * i], &C[new_idx], - sorted_row < tot_m * topk && - (8 * (i / 2) + row < prob_m && - (i < (thread_m_blocks - 1) * 4 || - sorted_ids[8 * (i / 2) + row] < tot_m * topk))); - } - cp_async_fence(); - cp_async_wait<0>(); - } - - #pragma unroll - for (int i = 0; i < thread_m_blocks * 4; i++) { - if (8 * (i / 2) + row < prob_m && - (i < (thread_m_blocks - 1) * 4 || - sorted_ids[8 * (i / 2) + row] < tot_m * topk)) { - if (!first) { - int4 c_red = sh[c_sh_wr + i * c_sh_wr_delta]; - #pragma unroll - for (int j = 0; j < 2 * 4; j++) { - reinterpret_cast( - &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)] += - __half2float(reinterpret_cast<__half*>(&c_red)[j]); - } - } - if (!last) { - int4 c; - #pragma unroll - for (int j = 0; j < 2 * 4; j++) { - reinterpret_cast<__half*>(&c)[j] = - __float2half(reinterpret_cast( - &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)]); - } - int c_idx = - c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2); - int row = sorted_ids[c_idx / c_gl_stride]; - if (row < tot_m * topk) { - int new_idx = row * c_gl_stride + c_idx % c_gl_stride; - C[new_idx] = c; - } - } - } - } - } - }; - - // Write out the reduce final result in the correct layout. We only actually - // reshuffle matrix fragments in this step, the reduction above is performed - // in fragment layout. - auto write_result = [&]() { - int c_gl_stride = prob_n / 8; - constexpr int c_sh_stride = 2 * thread_n_blocks + 1; - int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks)); - constexpr int c_sh_rd_delta = - c_sh_stride * (threads / (2 * thread_n_blocks)); - - int c_gl_wr = c_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) + - (threadIdx.x % (2 * thread_n_blocks)); - c_gl_wr += (2 * thread_n_blocks) * slice_col; - int c_sh_wr = - (4 * c_sh_stride) * ((threadIdx.x % 32) / 4) + (threadIdx.x % 32) % 4; - c_sh_wr += 32 * (threadIdx.x / 32); - int c_sh_rd = c_sh_stride * (threadIdx.x / (2 * thread_n_blocks)) + - (threadIdx.x % (2 * thread_n_blocks)); - - int c_gl_wr_end = c_gl_stride * prob_m; - - // We first reorder in shared memory to guarantee the most efficient final - // global write patterns - auto write = [&](int idx, float c0, float c1, FragS& s) { - half2 res = __halves2half2(__float2half(c0), __float2half(c1)); - - // For per-column quantization we finally apply the scale here (only for - // 4-bit) - if constexpr (!has_act_order && group_blocks == -1 && - w_type.size_bits() == 4) { - res = __hmul2(res, s[0]); - } - - ((half2*)sh)[idx] = res; - }; - if (threadIdx.x / 32 < thread_n_blocks / 4) { - #pragma unroll - for (int i = 0; i < thread_m_blocks; i++) { - #pragma unroll - for (int j = 0; j < 4; j++) { - int wr = c_sh_wr + 8 * j; - write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0], - frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]); - write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2], - frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]); - write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0], - frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]); - write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2], - frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]); - } - c_sh_wr += 16 * (4 * c_sh_stride); - } - } - __syncthreads(); - - #pragma unroll - for (int i = 0; - i < ceildiv(16 * thread_m_blocks, threads / (2 * thread_n_blocks)); - i++) { - if (c_gl_wr < c_gl_wr_end) { - int row = sorted_ids[c_gl_wr / c_gl_stride]; - if (row < tot_m * topk) { - int off = row * c_gl_stride + c_gl_wr % c_gl_stride; - if (!apply_weights) { - C[off] = sh[c_sh_rd]; - } else { - __half* ctrg = reinterpret_cast<__half*>(&C[off]); - __half* csrc = reinterpret_cast<__half*>(&sh[c_sh_rd]); - for (int j = 0; j < 8; ++j) { - ctrg[j] = __float2half(topk_weights[row] * __half2float(csrc[j])); - } - } - c_gl_wr += c_gl_wr_delta; - c_sh_rd += c_sh_rd_delta; - } - } - } - }; - - // Start global fetch and register load pipelines. - auto start_pipes = [&]() { - // TODO re-enable after fixing this function - // fetch_sorted_ids_to_shared(); - // __syncthreads(); - - #pragma unroll - for (int i = 0; i < stages - 1; i++) { - if (has_act_order && i == 0) { - int last_g_idx = slice_k_start + stages * tb_k * 2; - if (last_g_idx >= prob_k) { - last_g_idx = prob_k - 1; - } - fetch_scales_to_shared(true, g_idx[slice_k_start], g_idx[last_g_idx]); - } - fetch_to_shared(i, i, i < slice_iters); - } - - zero_accums(); - wait_for_stage(); - init_same_group(0); - fetch_to_registers(0, 0); - fetch_scales_to_registers(0, 0); - a_gl_rd += a_gl_rd_delta_o * (stages - 1); - slice_k_start_shared_fetch += tb_k * (stages - 1); - }; - if (slice_iters) { - start_pipes(); - } - - // Main loop. - while (slice_iters) { - // We unroll over both the global fetch and the register load pipeline to - // ensure all shared memory accesses are static. Note that both pipelines - // have even length meaning that the next iteration will always start at - // index 0. - #pragma unroll - for (int pipe = 0; pipe < stages;) { - #pragma unroll - for (int k = 0; k < b_sh_wr_iters; k++) { - fetch_to_registers(k + 1, pipe % stages); - fetch_scales_to_registers(k + 1, pipe); - if (k == b_sh_wr_iters - 2) { - fetch_to_shared((pipe + stages - 1) % stages, pipe, - slice_iters >= stages); - pipe++; - wait_for_stage(); - init_same_group(pipe % stages); - } - matmul(k); - } - slice_iters--; - if (slice_iters == 0) { - break; - } - } - - a_gl_rd += a_gl_rd_delta_o * stages; - slice_k_start += tb_k * stages; - slice_k_start_shared_fetch += tb_k * stages; - - if constexpr (has_act_order) { - int first_group_id = g_idx[slice_k_start]; - int last_g_idx = slice_k_start + stages * tb_k * 2; - if (last_g_idx >= prob_k) { - last_g_idx = prob_k - 1; - } - int last_group_id = g_idx[last_g_idx]; - if (last_group_id >= sh_first_group_id + sh_num_groups) { - fetch_scales_to_shared(false, first_group_id, last_group_id); - __syncthreads(); - } - } - - // Process results and, if necessary, proceed to the next column slice. - // While this pattern may not be the most readable, other ways of writing - // the loop seemed to noticeably worse performance after compilation. - if (slice_iters == 0) { - cp_async_wait<0>(); - bool last = slice_idx == slice_count - 1; - if constexpr (!has_act_order && group_blocks == -1) { - if constexpr (w_type.size_bits() == 8) { - if (s_sh_wr_pred) { - cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]); - } - cp_async_fence(); - } else { - // For 4-bit per-column scales, we only fetch them here in the - // final step before write-out - if (last) { - if (s_sh_wr_pred) { - cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]); - } - cp_async_fence(); - } - } - } - - thread_block_reduce(); - if constexpr (!has_act_order && group_blocks == -1) { - if constexpr (w_type.size_bits() == 8) { - cp_async_wait<0>(); - __syncthreads(); - if (threadIdx.x / 32 < thread_n_blocks / 4) { - reinterpret_cast(&frag_s)[0] = sh_s[s_sh_rd + 0]; - reinterpret_cast(&frag_s)[1] = sh_s[s_sh_rd + 4]; - } - - } else { - if (last) { - cp_async_wait<0>(); - __syncthreads(); - if (threadIdx.x / 32 < thread_n_blocks / 4) { - reinterpret_cast(&frag_s)[0] = sh_s[s_sh_rd + 0]; - reinterpret_cast(&frag_s)[1] = sh_s[s_sh_rd + 4]; - } - } - } - } - - // For 8-bit channelwise, we apply the scale before the global reduction - // that converts the fp32 results to fp16 (so that we avoid possible - // overflow in fp16) - if constexpr (!has_act_order && group_blocks == -1 && - w_type.size_bits() == 8) { - if (threadIdx.x / 32 < thread_n_blocks / 4) { - #pragma unroll - for (int i = 0; i < thread_m_blocks; i++) { - #pragma unroll - for (int j = 0; j < 4; j++) { - scale_float(reinterpret_cast(&frag_c[i][j][0][0]), - frag_s[j / 2][2 * (j % 2) + 0]); - scale_float(reinterpret_cast(&frag_c[i][j][0][2]), - frag_s[j / 2][2 * (j % 2) + 0]); - - scale_float(reinterpret_cast(&frag_c[i][j][1][0]), - frag_s[j / 2][2 * (j % 2) + 1]); - scale_float(reinterpret_cast(&frag_c[i][j][1][2]), - frag_s[j / 2][2 * (j % 2) + 1]); - } - } - } - } - - if (slice_count > 1) { // only globally reduce if there is more than one - // block in a slice - barrier_acquire(&locks[slice_col], slice_idx); - global_reduce(slice_idx == 0, last); - barrier_release(&locks[slice_col], last); - } - if (last) // only the last block in a slice actually writes the result - write_result(); - slice_row = 0; - slice_col_par++; - slice_col++; - init_slice(); - if (slice_iters) { - a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + - (threadIdx.x % a_gl_rd_delta_o); - #pragma unroll - for (int i = 0; i < b_sh_wr_iters; i++) - B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles; - if (slice_col == 0) { - #pragma unroll - for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride; - } - - // Update slice k/n for scales loading - if constexpr (has_act_order) { - slice_k_start = tb_k * slice_row; - slice_k_finish = slice_k_start + tb_k * slice_iters; - slice_k_start_shared_fetch = slice_k_start; - slice_n_offset = act_s_col_tb_stride * slice_col; - - } else { - s_gl_rd = s_sh_stride * slice_col + threadIdx.x; - } - start_pipes(); - } - } - } -} - -template shared - // fetch pipeline - const bool has_act_order, // whether act_order is enabled - const int group_blocks = -1 // number of consecutive 16x16 blocks - // with a separate quantization scale - > -__global__ void MarlinMoE( - const int4* __restrict__ A, // fp16 input matrix of shape mxk - const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn - int4* __restrict__ C, // fp16 output buffer of shape mxn - const int* __restrict__ sorted_ids_base, // int32 sorted ids of experts - const float* __restrict__ topk_weights, // float topk weights - const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape - // (k/groupsize)xn - const int* __restrict__ g_idx, // int32 group indices of shape k - const int* __restrict__ expert_offsets, - int num_groups, // number of scale groups per output channel - int expert_idx, // idx of current expert - int num_experts, // number of experts - int topk, // topk parameter of moe - int prob_m, // batch dimension m - int prob_n, // output dimension n - int prob_k, // reduction dimension k - int tot_m, // total number of rows in A and C - int* locks, // extra global storage for barrier synchronization - bool replicate_input, // do we use the same input for each expert? - bool apply_weights, // apply weights to output - int current_m_block, // current m block to start kernel computation from - int max_par, // maximum parallelism - int cfg_max_m_blocks // upper bound on m blocks -) { - int m_block_ctr = current_m_block; - - const int* sorted_ids_expert = - sorted_ids_base + expert_offsets[expert_idx] + m_block_ctr * 4 * max_par; - int tot_its = expert_offsets[expert_idx + 1] - expert_offsets[expert_idx]; - if (tot_its == 0) { - return; - } - int tot_m_blocks = ceildiv(tot_its, 16); - int pad = 16 * tot_m_blocks - tot_its; - - if (m_block_ctr >= tot_m_blocks) { - return; - } - - int max_block = tot_m_blocks - m_block_ctr; - prob_m = tot_its - 16 * m_block_ctr; - - int par = 1; - if (max_block > cfg_max_m_blocks) { - // Note that parallel > 1 currently only works for inputs without any - // padding - par = (16 * max_block - pad) / (16 * cfg_max_m_blocks); - if (par > max_par) par = max_par; - prob_m = (16 * cfg_max_m_blocks) * par; - m_block_ctr += cfg_max_m_blocks * (par - 1); - max_block = cfg_max_m_blocks; - } - - if (max_block == 1) { - MarlinMoESingle( - A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, - expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, - prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, - current_m_block); - } else if (max_block == 2) { - MarlinMoESingle( - A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, - expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, - prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, - current_m_block); - } else if (max_block == 3) { - MarlinMoESingle( - A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, - expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, - prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, - current_m_block); - } else { - MarlinMoESingle( - A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, - expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, - prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, - current_m_block); - } -} - #else __global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr, @@ -1454,81 +134,8 @@ __global__ void compute_expert_offsets(int const* __restrict__ topk_ids, return; } -template shared - // fetch pipeline - const bool has_act_order, // whether act_order is enabled - const int group_blocks = -1 // number of consecutive 16x16 blocks - // with a separate quantization scale - > -__global__ void MarlinMoE( - const int4* __restrict__ A, // fp16 input matrix of shape mxk - const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn - int4* __restrict__ C, // fp16 output buffer of shape mxn - const int* __restrict__ sorted_ids, // int32 sorted ids of experts - const float* __restrict__ topk_weights, // float topk weights - const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape - // (k/groupsize)xn - const int* __restrict__ g_idx, // int32 group indices of shape k - const int* __restrict__ expert_offsets, - int num_groups, // number of scale groups per output channel - int expert_idx, // idx of current expert - int num_experts, // number of experts - int topk, // topk parameter of moe - int prob_m, // batch dimension m - int prob_n, // output dimension n - int prob_k, // reduction dimension k - int tot_m, // total number of rows in A and C - int* locks, // extra global storage for barrier synchronization - bool replicate_input, // do we use the same input for each expert? - bool apply_weights, // apply weights to output - int current_m_block, // current m block to start kernel computation from - int max_par, // maximum parallelism - int cfg_max_m_blocks // upper bound on m blocks - -) { - // Marlin is not implemented yet for SM < 8.0 - assert(false); - return; -} - #endif -// 8 warps are a good choice since every SM has 4 schedulers and having more -// than 1 warp per schedule allows some more latency hiding. At the same time, -// we want relatively few warps to have many registers per warp and small tiles. -const int USER_THREADS = - 256; // Note: This is only used with user-provided thread_k/n -const int STAGES = 4; // 4 pipeline stages fit into shared memory -// const int SHARED_MEM = -// 96 * 1024; // max shared memory on compute capability 8.6 (< 8.0) - -static constexpr int min_thread_n = 64; -static constexpr int min_thread_k = 64; - -#define __CALL_IF_MOE(W_TYPE, THREAD_N_BLOCKS, THREAD_K_BLOCKS, HAS_ACT_ORDER, \ - GROUP_BLOCKS, NUM_THREADS) \ - else if (q_type == W_TYPE && thread_n_blocks == THREAD_N_BLOCKS && \ - thread_k_blocks == THREAD_K_BLOCKS && \ - has_act_order == HAS_ACT_ORDER && group_blocks == GROUP_BLOCKS && \ - num_threads == NUM_THREADS) { \ - cudaFuncSetAttribute( \ - MarlinMoE, \ - cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ - MarlinMoE \ - <<>>( \ - A_ptr, B_ptr, C_ptr, sorted_ids_ptr, topk_weights_ptr, s_ptr, \ - g_idx_ptr, expert_offsets_ptr, num_groups, expert_idx, \ - num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, \ - replicate_input, apply_weights, m_block, max_par, \ - exec_cfg.max_m_blocks); \ - } - typedef struct { int thread_k; int thread_n; @@ -1703,28 +310,27 @@ exec_config_t determine_thread_config(int prob_m, int prob_n, int prob_k, return exec_config_t{0, {-1, -1, -1}}; } -#define CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \ - __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \ - __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \ - __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \ - __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \ - \ - __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \ - __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \ - __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \ - __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) - -void marlin_mm_moe_f16i4(const void* A, const void* B, void* C, - const void* sorted_ids, const void* topk_weights, - const void* topk_ids, const void* s, const void* g_idx, - const void* perm, void* a_tmp, void* expert_offsets, - int prob_m, int prob_n, int prob_k, void* workspace, - vllm::ScalarType const& q_type, bool has_act_order, - bool is_k_full, int num_groups, int group_size, - int num_experts, int topk, int moe_block_size, int dev, - cudaStream_t stream, int thread_k, int thread_n, - int sms, int max_par, bool replicate_input, - bool apply_weights) { +#define CALL_MOE_KERNEL_FUNCTION(KERNEL_FUNCTION) \ + else if (KERNEL_FUNCTION(q_type, thread_n_blocks, thread_k_blocks, \ + has_act_order, group_blocks, num_threads, blocks, \ + max_shared_mem, stream, A_ptr, B_ptr, C_ptr, \ + sorted_ids_ptr, topk_weights_ptr, s_ptr, g_idx_ptr, \ + expert_offsets_ptr, num_groups, expert_idx, \ + num_experts, topk, prob_m, prob_n, prob_k, tot_m, \ + locks, replicate_input, apply_weights, m_block, \ + max_par, exec_cfg.max_m_blocks)) { \ + } + +void marlin_mm_moe(const void* A, const void* B, void* C, + const void* sorted_ids, const void* topk_weights, + const void* topk_ids, const void* s, const void* g_idx, + const void* perm, void* a_tmp, void* expert_offsets, + int prob_m, int prob_n, int prob_k, void* workspace, + vllm::ScalarType const& q_type, bool has_act_order, + bool is_k_full, int num_groups, int group_size, + int num_experts, int topk, int moe_block_size, int dev, + cudaStream_t stream, int thread_k, int thread_n, int sms, + int max_par, bool replicate_input, bool apply_weights) { TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m, ", ", prob_n, ", ", prob_k, "]"); @@ -1848,26 +454,16 @@ void marlin_mm_moe_f16i4(const void* A, const void* B, void* C, int tot_m_blocks = ceildiv(tot_m, 16); for (int m_block = 0; m_block < tot_m_blocks; m_block += 4 * exec_cfg.max_m_blocks) { - // make it max possible value - int thread_m_blocks = exec_cfg.max_m_blocks; - if (false) { } - CALL_IF_MOE(vllm::kU4B8, 16, 4, 256) - CALL_IF_MOE(vllm::kU4B8, 8, 8, 256) - CALL_IF_MOE(vllm::kU4B8, 8, 4, 128) - CALL_IF_MOE(vllm::kU4B8, 4, 8, 128) - CALL_IF_MOE(vllm::kU8B128, 16, 4, 256) - CALL_IF_MOE(vllm::kU8B128, 8, 8, 256) - CALL_IF_MOE(vllm::kU8B128, 8, 4, 128) - CALL_IF_MOE(vllm::kU8B128, 4, 8, 128) + CALL_MOE_KERNEL_FUNCTION(call_marlin_moe_kernel_ku4b8) + CALL_MOE_KERNEL_FUNCTION(call_marlin_moe_kernel_ku8b128) else { TORCH_CHECK(false, "Unsupported shapes: MNK = [" + str(prob_m) + ", " + str(prob_n) + ", " + str(prob_k) + "]" + ", has_act_order = " + str(has_act_order) + ", num_groups = " + str(num_groups) + ", group_size = " + str(group_size) + - ", thread_m_blocks = " + str(thread_m_blocks) + ", thread_n_blocks = " + str(thread_n_blocks) + ", thread_k_blocks = " + str(thread_k_blocks)); } @@ -1946,7 +542,7 @@ torch::Tensor marlin_gemm_moe( } } - marlin_moe::marlin_mm_moe_f16i4( + marlin_moe::marlin_mm_moe( a.data_ptr(), b_q_weights.data_ptr(), c.data_ptr(), sorted_ids.data_ptr(), topk_weights.data_ptr(), topk_ids.data_ptr(), b_scales.data_ptr(), g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr(), From e2b46b1b91ab838eeb6e803f903074d15794d4d3 Mon Sep 17 00:00:00 2001 From: ElizaWszola Date: Fri, 20 Sep 2024 08:18:26 -0400 Subject: [PATCH 2/2] format --- csrc/moe/marlin_kernels/marlin_moe_kernel.h | 16 ++++++++-------- .../marlin_kernels/marlin_moe_kernel_ku4b8.cu | 18 +++++++++--------- .../marlin_kernels/marlin_moe_kernel_ku4b8.h | 18 +++++++++--------- .../marlin_moe_kernel_ku8b128.cu | 18 +++++++++--------- .../marlin_kernels/marlin_moe_kernel_ku8b128.h | 18 +++++++++--------- 5 files changed, 44 insertions(+), 44 deletions(-) diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel.h b/csrc/moe/marlin_kernels/marlin_moe_kernel.h index 473779492177e..0bd3017226c94 100644 --- a/csrc/moe/marlin_kernels/marlin_moe_kernel.h +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel.h @@ -1396,30 +1396,30 @@ static constexpr int min_thread_n = 64; static constexpr int min_thread_k = 64; #define __CALL_IF_MOE(W_TYPE, THREAD_N_BLOCKS, THREAD_K_BLOCKS, HAS_ACT_ORDER, \ - GROUP_BLOCKS, NUM_THREADS) \ + GROUP_BLOCKS, NUM_THREADS) \ else if (q_type == W_TYPE && thread_n_blocks == THREAD_N_BLOCKS && \ thread_k_blocks == THREAD_K_BLOCKS && \ - has_act_order == HAS_ACT_ORDER && \ - group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS) { \ + has_act_order == HAS_ACT_ORDER && group_blocks == GROUP_BLOCKS && \ + num_threads == NUM_THREADS) { \ cudaFuncSetAttribute( \ MarlinMoE, \ + STAGES, HAS_ACT_ORDER, GROUP_BLOCKS>, \ cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ MarlinMoE \ + STAGES, HAS_ACT_ORDER, GROUP_BLOCKS> \ <<>>( \ A_ptr, B_ptr, C_ptr, sorted_ids_ptr, topk_weights_ptr, s_ptr, \ - g_idx_ptr, expert_offsets_ptr, num_groups, expert_idx, \ + g_idx_ptr, expert_offsets_ptr, num_groups, expert_idx, \ num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, \ replicate_input, apply_weights, m_block, max_par, \ cfg_max_m_blocks); \ } -#define GPTQ_CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \ +#define GPTQ_CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \ __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \ __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \ __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \ __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \ __CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) -} +} // namespace marlin_moe diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu index a6fe082632750..cbafd9ffe7474 100644 --- a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu @@ -5,15 +5,15 @@ namespace marlin_moe { // We return bool so we can create these different kernel calls as a sequence // of if-elseif's. bool call_marlin_moe_kernel_ku4b8( - vllm::ScalarType const& q_type, int thread_n_blocks, - int thread_k_blocks, bool has_act_order, int group_blocks, - int num_threads, int blocks, int max_shared_mem, cudaStream_t stream, - const int4* A_ptr, const int4* B_ptr, int4* C_ptr, - const int* sorted_ids_ptr, const float* topk_weights_ptr, const int4* s_ptr, - const int* g_idx_ptr, int* expert_offsets_ptr, - int num_groups, int expert_idx, int num_experts, int topk, int prob_m, - int prob_n, int prob_k, int tot_m, int* locks, bool replicate_input, - bool apply_weights, int m_block, int max_par, int cfg_max_m_blocks) { + vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks, + bool has_act_order, int group_blocks, int num_threads, int blocks, + int max_shared_mem, cudaStream_t stream, const int4* A_ptr, + const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr, + const float* topk_weights_ptr, const int4* s_ptr, const int* g_idx_ptr, + int* expert_offsets_ptr, int num_groups, int expert_idx, int num_experts, + int topk, int prob_m, int prob_n, int prob_k, int tot_m, int* locks, + bool replicate_input, bool apply_weights, int m_block, int max_par, + int cfg_max_m_blocks) { if (false) { } GPTQ_CALL_IF_MOE(vllm::kU4B8, 16, 4, 256) diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h index 21b7a7b6eeec0..9eacb42c115f0 100644 --- a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.h @@ -7,14 +7,14 @@ namespace marlin_moe { // We return bool so we can create these different kernel calls as a sequence // of if-elseif's. bool call_marlin_moe_kernel_ku4b8( - vllm::ScalarType const& q_type, int thread_n_blocks, - int thread_k_blocks, bool has_act_order, int group_blocks, - int num_threads, int blocks, int max_shared_mem, cudaStream_t stream, - const int4* A_ptr, const int4* B_ptr, int4* C_ptr, - const int* sorted_ids_ptr, const float* topk_weights_ptr, const int4* s_ptr, - const int* g_idx_ptr, int* expert_offsets_ptr, - int num_groups, int expert_idx, int num_experts, int topk, int prob_m, - int prob_n, int prob_k, int tot_m, int* locks, bool replicate_input, - bool apply_weights, int m_block, int max_par, int cfg_max_m_blocks); + vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks, + bool has_act_order, int group_blocks, int num_threads, int blocks, + int max_shared_mem, cudaStream_t stream, const int4* A_ptr, + const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr, + const float* topk_weights_ptr, const int4* s_ptr, const int* g_idx_ptr, + int* expert_offsets_ptr, int num_groups, int expert_idx, int num_experts, + int topk, int prob_m, int prob_n, int prob_k, int tot_m, int* locks, + bool replicate_input, bool apply_weights, int m_block, int max_par, + int cfg_max_m_blocks); } // namespace marlin_moe diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu index 804cac0217f08..c46712474f715 100644 --- a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu @@ -5,15 +5,15 @@ namespace marlin_moe { // We return bool so we can create these different kernel calls as a sequence // of if-elseif's. bool call_marlin_moe_kernel_ku8b128( - vllm::ScalarType const& q_type, int thread_n_blocks, - int thread_k_blocks, bool has_act_order, int group_blocks, - int num_threads, int blocks, int max_shared_mem, cudaStream_t stream, - const int4* A_ptr, const int4* B_ptr, int4* C_ptr, - const int* sorted_ids_ptr, const float* topk_weights_ptr, const int4* s_ptr, - const int* g_idx_ptr, int* expert_offsets_ptr, - int num_groups, int expert_idx, int num_experts, int topk, int prob_m, - int prob_n, int prob_k, int tot_m, int* locks, bool replicate_input, - bool apply_weights, int m_block, int max_par, int cfg_max_m_blocks) { + vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks, + bool has_act_order, int group_blocks, int num_threads, int blocks, + int max_shared_mem, cudaStream_t stream, const int4* A_ptr, + const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr, + const float* topk_weights_ptr, const int4* s_ptr, const int* g_idx_ptr, + int* expert_offsets_ptr, int num_groups, int expert_idx, int num_experts, + int topk, int prob_m, int prob_n, int prob_k, int tot_m, int* locks, + bool replicate_input, bool apply_weights, int m_block, int max_par, + int cfg_max_m_blocks) { if (false) { } GPTQ_CALL_IF_MOE(vllm::kU8B128, 16, 4, 256) diff --git a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h index c498420989309..7cd9acafb3b80 100644 --- a/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h +++ b/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.h @@ -5,14 +5,14 @@ namespace marlin_moe { bool call_marlin_moe_kernel_ku8b128( - vllm::ScalarType const& q_type, int thread_n_blocks, - int thread_k_blocks, bool has_act_order, int group_blocks, - int num_threads, int blocks, int max_shared_mem, cudaStream_t stream, - const int4* A_ptr, const int4* B_ptr, int4* C_ptr, - const int* sorted_ids_ptr, const float* topk_weights_ptr, const int4* s_ptr, - const int* g_idx_ptr, int* expert_offsets_ptr, - int num_groups, int expert_idx, int num_experts, int topk, int prob_m, - int prob_n, int prob_k, int tot_m, int* locks, bool replicate_input, - bool apply_weights, int m_block, int max_par, int cfg_max_m_blocks); + vllm::ScalarType const& q_type, int thread_n_blocks, int thread_k_blocks, + bool has_act_order, int group_blocks, int num_threads, int blocks, + int max_shared_mem, cudaStream_t stream, const int4* A_ptr, + const int4* B_ptr, int4* C_ptr, const int* sorted_ids_ptr, + const float* topk_weights_ptr, const int4* s_ptr, const int* g_idx_ptr, + int* expert_offsets_ptr, int num_groups, int expert_idx, int num_experts, + int topk, int prob_m, int prob_n, int prob_k, int tot_m, int* locks, + bool replicate_input, bool apply_weights, int m_block, int max_par, + int cfg_max_m_blocks); }