Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Error loading FP8 weights for gpt_bigcode model #5513

Closed
tdoublep opened this issue Jun 13, 2024 · 0 comments · Fixed by #5460
Closed

[Bug]: Error loading FP8 weights for gpt_bigcode model #5513

tdoublep opened this issue Jun 13, 2024 · 0 comments · Fixed by #5460
Labels
bug Something isn't working

Comments

@tdoublep
Copy link
Member

Your current environment

$ python collect_env.py
Collecting environment information...
PyTorch version: 2.3.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.29.5
Libc version: glibc-2.35

Python version: 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:36:13) [GCC 12.3.0] (64-bit runtime)
Python platform: Linux-5.15.0-107-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA H100 80GB HBM3
GPU 1: NVIDIA H100 80GB HBM3
GPU 2: NVIDIA H100 80GB HBM3
GPU 3: NVIDIA H100 80GB HBM3
GPU 4: NVIDIA H100 80GB HBM3
GPU 5: NVIDIA H100 80GB HBM3
GPU 6: NVIDIA H100 80GB HBM3
GPU 7: NVIDIA H100 80GB HBM3

Nvidia driver version: 550.54.15
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      52 bits physical, 57 bits virtual
Byte Order:                         Little Endian
CPU(s):                             192
On-line CPU(s) list:                0-191
Vendor ID:                          GenuineIntel
Model name:                         Intel(R) Xeon(R) Platinum 8474C
CPU family:                         6
Model:                              143
Thread(s) per core:                 2
Core(s) per socket:                 48
Socket(s):                          2
Stepping:                           8
CPU max MHz:                        3800.0000
CPU min MHz:                        800.0000
BogoMIPS:                           4200.00
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
Virtualization:                     VT-x
L1d cache:                          4.5 MiB (96 instances)
L1i cache:                          3 MiB (96 instances)
L2 cache:                           192 MiB (96 instances)
L3 cache:                           195 MiB (2 instances)
NUMA node(s):                       2
NUMA node0 CPU(s):                  0-47,96-143
NUMA node1 CPU(s):                  48-95,144-191
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] torch==2.3.0
[pip3] transformers==4.41.2
[pip3] triton==2.3.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-nccl-cu12          2.20.5                   pypi_0    pypi
[conda] torch                     2.3.0                    pypi_0    pypi
[conda] transformers              4.41.2                   pypi_0    pypi
[conda] triton                    2.3.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.0
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	NIC0	NIC1	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	NV18	NV18	NV18	NV18	NV18	NV18	NV18	PIX	PIX	0-47,96-143	0		N/A
GPU1	NV18	 X 	NV18	NV18	NV18	NV18	NV18	NV18	SYS	SYS	0-47,96-143	0		N/A
GPU2	NV18	NV18	 X 	NV18	NV18	NV18	NV18	NV18	SYS	SYS	0-47,96-143	0		N/A
GPU3	NV18	NV18	NV18	 X 	NV18	NV18	NV18	NV18	SYS	SYS	0-47,96-143	0		N/A
GPU4	NV18	NV18	NV18	NV18	 X 	NV18	NV18	NV18	SYS	SYS	48-95,144-191	1		N/A
GPU5	NV18	NV18	NV18	NV18	NV18	 X 	NV18	NV18	SYS	SYS	48-95,144-191	1		N/A
GPU6	NV18	NV18	NV18	NV18	NV18	NV18	 X 	NV18	SYS	SYS	48-95,144-191	1		N/A
GPU7	NV18	NV18	NV18	NV18	NV18	NV18	NV18	 X 	SYS	SYS	48-95,144-191	1		N/A
NIC0	PIX	SYS	SYS	SYS	SYS	SYS	SYS	SYS	 X 	PIX				
NIC1	PIX	SYS	SYS	SYS	SYS	SYS	SYS	SYS	PIX	 X 				

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1

🐛 Describe the bug

I get the following error when trying to load granite-20b after converting to fp8:

$ python3 -m "vllm.entrypoints.openai.api_server" --model nm-testing/granite-20b-code-base-FP8
INFO 06-13 15:35:14 api_server.py:177] vLLM API server version 0.5.0
INFO 06-13 15:35:14 api_server.py:178] args: Namespace(host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, chat_template=None, response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], model='nm-testing/granite-20b-code-base-FP8', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, download_dir=None, load_format='auto', dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=None, guided_decoding_backend='outlines', distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=0, swap_space=4, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, enforce_eager=False, max_context_len_to_capture=None, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, enable_lora=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, device='auto', image_input_type=None, image_token_id=None, image_input_shape=None, image_feature_size=None, image_processor=None, image_processor_revision=None, disable_image_processor=False, scheduler_delay_factor=0.0, enable_chunked_prefill=False, speculative_model=None, num_speculative_tokens=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, model_loader_extra_config=None, preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, engine_use_ray=False, disable_log_requests=False, max_log_len=None)
/home/zrltpa/miniforge3/envs/dev-env/lib/python3.11/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
  warnings.warn(
WARNING 06-13 15:35:14 config.py:216] fp8 quantization is not fully optimized yet. The speed can be slower than non-quantized models.
INFO 06-13 15:35:14 llm_engine.py:161] Initializing an LLM engine (v0.5.0) with config: model='nm-testing/granite-20b-code-base-FP8', speculative_config=None, tokenizer='nm-testing/granite-20b-code-base-FP8', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=8192, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, disable_custom_all_reduce=False, quantization=fp8, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), seed=0, served_model_name=nm-testing/granite-20b-code-base-FP8)
[rank0]:[W ProcessGroupGloo.cpp:721] Warning: Unable to resolve hostname to a (local) address. Using the loopback address as fallback. Manually set the network interface to bind to with GLOO_SOCKET_IFNAME. (function operator())
WARNING 06-13 15:35:24 fp8.py:48] Detected fp8 checkpoint. Please note that the format is experimental and subject to change.
INFO 06-13 15:35:24 weight_utils.py:218] Using model weights format ['*.safetensors']
[rank0]: Traceback (most recent call last):
[rank0]:   File "<frozen runpy>", line 198, in _run_module_as_main
[rank0]:   File "<frozen runpy>", line 88, in _run_code
[rank0]:   File "/home/zrltpa/vllm/vllm/entrypoints/openai/api_server.py", line 196, in <module>
[rank0]:     engine = AsyncLLMEngine.from_engine_args(
[rank0]:              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/zrltpa/vllm/vllm/engine/async_llm_engine.py", line 395, in from_engine_args
[rank0]:     engine = cls(
[rank0]:              ^^^^
[rank0]:   File "/home/zrltpa/vllm/vllm/engine/async_llm_engine.py", line 349, in __init__
[rank0]:     self.engine = self._init_engine(*args, **kwargs)
[rank0]:                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/zrltpa/vllm/vllm/engine/async_llm_engine.py", line 470, in _init_engine
[rank0]:     return engine_class(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/zrltpa/vllm/vllm/engine/llm_engine.py", line 223, in __init__
[rank0]:     self.model_executor = executor_class(
[rank0]:                           ^^^^^^^^^^^^^^^
[rank0]:   File "/home/zrltpa/vllm/vllm/executor/executor_base.py", line 41, in __init__
[rank0]:     self._init_executor()
[rank0]:   File "/home/zrltpa/vllm/vllm/executor/gpu_executor.py", line 24, in _init_executor
[rank0]:     self.driver_worker.load_model()
[rank0]:   File "/home/zrltpa/vllm/vllm/worker/worker.py", line 121, in load_model
[rank0]:     self.model_runner.load_model()
[rank0]:   File "/home/zrltpa/vllm/vllm/worker/model_runner.py", line 147, in load_model
[rank0]:     self.model = get_model(
[rank0]:                  ^^^^^^^^^^
[rank0]:   File "/home/zrltpa/vllm/vllm/model_executor/model_loader/__init__.py", line 21, in get_model
[rank0]:     return loader.load_model(model_config=model_config,
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/zrltpa/vllm/vllm/model_executor/model_loader/loader.py", line 249, in load_model
[rank0]:     model.load_weights(
[rank0]:   File "/home/zrltpa/vllm/vllm/model_executor/models/gpt_bigcode.py", line 302, in load_weights
[rank0]:     weight_loader(param, loaded_weight)
[rank0]:   File "/home/zrltpa/vllm/vllm/model_executor/layers/linear.py", line 583, in weight_loader
[rank0]:     assert param_data.shape == loaded_weight.shape
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: AssertionError
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

Successfully merging a pull request may close this issue.

1 participant